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A. INTRODUCTION

DISCRETE is a FORTRAN IV program for the automatic analysis
of data being represented by:

Ny

Yy = E ujexp(—xjtk), k=1,2,...,N, NA <9,
=0

where provision can be made for an unknown baseline component
g with AO = 0. It is completely automatic in that only the raw
data (i.e., the Y and tk) are input; no potentially biased initial
guesses at the aj, Aj or NA are neede? or even allowed.

The approach is the same as in I and II; i.e., the use
of transforms to obtain good starting estimates for nonlinear
least squares analyses of the data. Improvements include: (1)
making direct use of the knowledge that the data is being repre-
sented by a discrete sum (rather than an integral over a con-
tinuous distribution) of exponentials. (The picturesque but less
accurate analysis of overlapping spectral peaks is avoided.)
and (2) making much use of the special properties of exponentials
for the rapid evaluation of their sums, products, and derivatives.
This allows, if necessary, a very thorough and reliable (but
without these shortcuts much too time-consuming) grid search in
parameter space for least squares solutions. However, for
referencing purposes, I and II can be referenced.

This description is meant to be complete as far as using the
program and interpreting the results are concerned.

DISCRETE was written with the following order of priorities:

(1) accuracy, resolving power, and reliability

(2) flexibility, wide range of applicability, and ease of use

(3) computation speed

(4) economy of core storage and FORTRAN statements
Priorities (1) and (2) were considered very high and it is by far
the most powerful and reliable method I know of for analyzing
exponentials. Priorities (1)-(3) were constantly in direct con-

flict with (4), and hence the program has about 2500 card images.

4

"I = S. W. Provencher, Biophys. J. 16, 27 (1976).
II = S. W. Provencher, J. Chem. Phys. 64, 2772 (1976).
eq. I12 = Equation 12 of I; ref. II3 = reference 3 of II, etc.
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There are two versions of DISCRETE. Version 1A (nearly all
in single precision) can analyze for up to NA = 5 and must be
run on a computer with at least 7 significant figures in its single
precision floating point FORTRAN arithmetic. However, this is
the bare minimum allowable; on an IBM 370/158 (with ~ 7 significant
figures) 4 out of 10 test analyses had difficulties or failed
because of loss of accuracy in matrix inversions. Although these
were 10 especially difficult cases, Version 1B, which contains

double precision parts where needed and can handle up to N, = 9, is

strongly recommended for computers with 7 significant figuies (and
is absolutely necessary for those with less).

About 100 tests on a UNIVAC 1108 (with ~ 8% sig. figs.) were
less conclusive. Only 3 had difficulties, and these involved

closely spaced Aj with N, > 4., 1In this borderline area of 8 or 9

sig. figs., the choice o% versions will depend on economic con-
siderations of core storage and computer time, your data, and how
essential thoroughness and reliability are to you. One way to

help evaluate your situation would be to initially use Version 1B
for the first series of your data sets, take the most difficult
cases (i.e., the ones with closely spaced Aj and large NA) and
rerun these with Version 1A and compare. Another strategy would be
to always use Version 1A and rerun any "suspicious" cases (e.g.,

where the chosen N, seems too small) with Version 1B. However,

A
this tends to defeat the objectivity with which N, is automatically

determined, since your personal bias would dictaté which solutions
were "suspicious" and which were not.

Except for this borderline area of 8 or 9 sig. figs., the
choice of versions should be clear. With 10 or more sig. figs.,
you should always be able to use Version 1A (except of course if
e 5).

The computation times and core storage requirements will vary

you feel your data warrants looking for N

greatly with the size of the problem and the options chosen.

However, for a typical case of N I 200 and N, < 4, a UNIVAC 1108

(with a storage cycle time of 0.75 usec) reqﬁires about 40 sec.

CPU time and about 26 K UNIVAC words (v 117 K IBM bytes) for Version

1A and about 70 sec. CPU and 40 K words (v~ 180 K bytes) for Version

1B. Overlays (see section F.1) can reduce the core requirements to

about 20 K (90 K bytes) and 32 K (144 K bytes) words, respectively.
Versions 1A and 1B have the same input and output structure

and, except where noted, everything that follows applies to both

versions.
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B. COPYING DISCRETE FROM THE TAPES

Instructions for copying DISCRETE from each of the three
types of tapes used to distribute it are given below. All three
types are standard 9 track, 800 bits per inch, odd parity, unlabeled

magnetic tapes.

B.1. EBCDIC tape
This type of tape (as well as the ASCII type in section B.2)

contairsVersion 1A, Version 1B, and test input data in 3 successive
files, which are written as (FORTRAN) card images with 80 bytes
per record and 800 bytes (10 records) per block. In the first two

files the main program is first, followed by the 15 subprograms:
BLOCK DATA, DATAIO, WEIGHT, FANLYZ, YANLYZ, LSTSQR, EVAR, VARF,
ETHEOR, PIVOT, PIVOT1, ANLERR, FISHER, RESIDU, and PLPRES.

The following control statements were used to read the tape

onto a disk of an IBM 370/158:

// (JOB card — 40K, 3 sec. CPU)
/KSETUP TAPE 1E?? WITHOUT RING (?? depends on your reel no.)

J/C0PYY EXFEC POM=IFRAGFNER
f/SYSPRIMT DI SYSNMIT=4

//7SYSIN DD DijMuy

F7SYSUTYI DD UNIT=2400,NSN=C TNGL VNL=SER=TO1,LAREL={1,NL},

// DCR={RECFM=FR,LEFEC|L=80,BLKSTIS=200,NFN=2),NISP=(NLN,PASS)

/7SYSUT2 DD DSM=SINGL,INTIT=NTSK,VIL=SFR=DT1SK53, SPACE=(CYL,(3,1),RLSF),
// DCB={RECFM=FR,IRECL=3N,RLKSTIZE=a02}),D16P={NFW,KEFP)

J/00PY2 EXFC POM=TERGENER

//SYSPRINT NN SYSNUT=A

J/SYSIN DD DUMMY
J/7SYSUTYI DD UNTT=2400,DSN=DNURL VAL =SER=TO1 ,LABEL={7,NL ),

7/ NCB={RECFM=TR,IRFCL=80,RLKSIIE=R3C,DEN=21,NISP=(0LD, PASS)

J7SYSUT2 DN DSN=DNYRL,UNIT=DISK,YDL=SER=NTSKE2, SPACE=(CYLs (3,1} ,PLSE),
// DCR=(RECFM=FR,IRECL=830,PLKSTIZF=800),D1SP={NEW,KEEP)

//COPY3 EXEC PAM=IEBRGENER

//7SYSPRINT DN SYSONUT=A

J/SYSIN PR DUMMY

J/7SYSUTL DD tINIT=2400,DSN=TNATA, YN =SER=TOL,LABREL={3,ML 1},

J/ DER={RECFM=EB,LRECL=R80,8LKSI7E=000,0EN=2),0ISP=(0LD, DELETE)
//75YSUT?2 nDH PON=TNATA,UNIT=NTSK, VOl =SER=NTSKH2, SPACE=(CYL,{3,1),RLSED,
/7 DCR=(RECFM=FR,LRECL=RO,ALKSIIE =800, DISP={NFu,KEEP)

/7
Versions 1A, 1B, and the test input data are then in disk files

named SINGL, DOUBL, and TDATA, respectively. They can then be
compiled, printed or punched. Most other IBM 360/370 computer
centers should be able to use the above statements, perhaps with a
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few obvious minor modifications due to installation-dependent

conventions. Most non-IBM computer centers should be able to use

the above information to read this tape.

B.2. ASCII tape
This tape is the same as the EBCDIC tape described above,

except that it was written in (standard 8-bit-per-character) ASCII

code rather than EBCDIC.

B.3. UNIVAC tape
This tape is intended specifically for UNIVAC 1100 series

It has two files, containing Version 1A and 1B, re-

Each file also contains the test data, as well as some

computers.

spectively.

other useful runstreams as described below. The following run

should catalog two files, read the two tape files into them and
print a listing of Version 1A and of the test data:
@RUN ese¢ (60 sec. total time, 12K, 60 pages)

ZASTeTUH Ta.elUZe2ACIR
INIWIND T,

2DEVETEC FILEZA
IDELETELC FILT 1D
ZASTYUR FILEIAsFYC
2ASTHUP FILT1Z»Fyr
2CCPIN T.sFTLC1R.
ACOPIN Ta o7ILCILD

[ ey
REREE T

2PRTSS FILTIALMAINLIA \

SPRT*S FILZIALCLOCKDATALA \

IPRT S FILTIALDATATNLA

IPRT*C FILIIALKEICHTLA \

IPRT S FILTIALTANLYZ1A \

2PRT+S FILCIALYANLYZ1A )

IPRTHS FILTIALLSTTAR1A | or better, simply

ZPRTs T FILC1AL.EVATIA replace all this by:

APRT S
APRTs S
IPRT .S
IPRT S
2PRTe "
IPRT S
IPRT S
IPRTsS

IPRT, T

@FIN

FILILALVARF1A

FILTTALETHECRIA
FILDIA.PTIVOT1A
FILDIALRTIYNTIIA
FILTIALANLERR1A
FTLITALFISHIRLA
FTILTIALRESIDULA
FILDIA.PLPRICLA
FI TCSTZATA

- »
ILC1ALTZSTD

@ADD FILE1A.PRINT



20. May 1976 B.3(2)

There may

be a few minor installation-dependent changes necessary

in the above statements (e.g., more detail in the ASG,TJH statement,

or something other than F40 in the ASG,UP statements). The element

FILE1A.PRINT contains the control statements to print out Version
1A and the test data. Similarly, the elements .PUNCH, .COMPILE,

and .MAP contain the control statements to punch a source deck

and the test data, compile, and map (collect an absolute executable

element called .MAIN). Thus you could compile, map, and run the

test data
@ RUN
@ ADD
@ ADD
@ XQT
@ ADD
@ FIN
After the
& RUN
@ XQT

with
FILE1A.COMPILE
FILE1A.MAP
FILETA.MAIN
FILETA.TESTDATA

absolute element has been produced, later runs need only:

FILETA.MAIN

[data]

@ FIN

Version 1B can be used by simply exchanging the characters 1A and

1B everywhere above (except in the COPIN statements).
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C. ADAPTING DISCRETE TO YOUR COMPUTER

C.1. Compilers tested

Every attempt has been made to adhere to the rules of ANSI
FORTRAN IV in order to have full compatability with a wide variety
of FORTRAN compilers. DISCRETE has been run mainly with UNIVAC
FORTRAN V which is very poor as far as diagnostics go. However 10
test runs were also made with Version 1A and 10 with Version 1B
on an IBM 370/158 with each of the compilers: WATFIV, FORTRAN G
and FORTRAN H. It is intended that, except for the possible
specification changes mentioned in section C.2, no changes whatso-
ever will be necessary. However, because of the limited experience
with other computers at this early stage of distribution, and
because of the wide range of computers intended to be used, this

cannot be guaranteed.

C.2. Possible necessary changes

There are some possible necessary changes to DATA and

DIMENSION statements in the main and BLOCK DATA subprograms that

you may have to make (once and for all) to specify the maximum size
of your problem and some characteristics of your computer. They

are described in self-explanatory comment statements and are clearly
set off from the rest of the program by card images with a C in
column 1 and stars in columns 2—72.+ These parts of Version 1A

are shown below (see section D.1 for definitions of the variable
names). Version 1B is the same except for numerical values and no
NSIGFG. After these changes have been made, you should be ready

to compile and run the program with the test data (see section D.3).

T Comments set off by card images with a C in column 1 and minus

signs in columns 2-72 are found throughout DISCRETE, but are
mainly intended for my information only. No attempt has been
made to make the program self-explanatory, since it is intended

to be widely applicable with no modifications.
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C MaiOl900
(o w o assseaanerastsssettans®osonstovetssonssstssadossecennesonnisavitraseMalU2500.

(40800800 eta’elatttanettacsiessststitasovssntssablosssssodssansronestacnehaliil)iul

C MaAIL2200
C THE FULLOWING INSTRUCTIUNS UESCRIBE ALL POSSIBLE NFCESSANY (HANGES Majl2340
C THAT _YOQu MAY have TO MakE (o THE MAIN PHROGRAMe {(SEF _ALSO THE Mald2a00
C BLOCK vUalA SUBPROGRAMYe) Mall2600
C MALQR2400-
c'...l.OQC.....Q"O.C.QQ'.OC‘n..'.ti....i'OCCOOOQCQOIQCCICCIQI.OCQC‘.’O.NA]UZ?UO
C  IF YCU CrbnGE wMAXx _JN TrE HLOCK UATA SUBPROGRAM. _YOU MUST wEALIUST . MalUO2&U0-
C THE OIMENSJUNS N ITHE FuLbLunInNG STATEMENT TU NMAX = MAIO2500
C - MalO30u0-—
DIMENSTON T(3331s Y(333)s SunTWL333)s YLYFIT(333) Mall3100
C Mal03200.-
a0t ertnoenentonsenisasrdtagseRosostetsltagctadssntatsnsctsatnssnsbenassasersMA]UIIUD
C ORUINARILY £ SHOVLw BE YIMENSIONED EInNMAXxs6) 1IN THE FOLLUWING — e MAIU3NUD-
C STATEMENT o HOwbEYERs IF YOUU wliLL ALWAYS INPUT REGINT=eTHUEe,s AAD Mal03s500
C IF_GMAA IS unFalbtR THAn 333 YOu CAn SAVE_STORAGE _BY U[MENSIONING .. MAJUISUD-
C- IT &S Elles! = MALU37UU
C MAlC3800--
DIMENSION E(333,6) Mal1039u0
MALU4000
c.-‘lictniing-n..o.‘occti-s'ln:‘i«..'oo.ct-og.cnn!:l.’.-.oinaugaogqlnncor‘lnxﬂﬂluu
C ORUINARILY G6SE_SHAuulD ir DIMENSIUNEY GSE(S0Qs4)e  HUWEVEK, 1E _YOU . Maju42ud.
C wIblL ALWAYS INPUT rEGINT=sFaLSEer AND IF NMAX [S LESS THaN 333, MalU4300
C YOU CAN Savi A& LITTLE STORpGE BY DIAENSIGNING IT _AS_GSELLl.%) [N . MajU4400.
C THE FOLLOWING STATeMENT = Mall4500
C Maj4,00-
VIMENSION GSE{(500441) MalO4700
C MALO4BUO-
CO‘IO..o-tgioaﬁtltﬂtiutoouotocta-Q-Qootvccgcn-lt..-co;cuqo.halgonoitctv'Ma104900
C IF YOU CHANGE wipinX In THe BLOCA DATA _SUBPAQGRAM. YOU-MUST..—— — - Mailis000-
C REAUJUST Tret DIMENSIONG IN THE FulLLU#live STATEMENT TO NIANTHX = MaiQ51U0
[9 J— MafU5200-
DIMENSION TSTani(10)s NT(10)s DELTAT(10) Mal0S300
C ~MAafUbeUU-
C THIS IS THE ENu OF AlLL POSSIBlE CHANGES YOU MAY HaVE TO MaKE Iw MALUSHUG
C _ThE Maliu PrUGRaMS Mall56uC
C MalUS7UU

CP e st P an R U st eatnsvtoryntsuctenssddisrstnsetsvatesgtrerrenatasornansstnnsaMaUSyul-
P E e e et asn kPP USIT RO P HO R TSRO RINEINRSRENPENTEYedanodntansnaysansnansMalUDSGUD
c . - S e MaALUBOUD

C.3. Underflow and WATFIV

In several parts of DISCRETE, arithmetic underflows are
expected to occur and be replaced by zero, which is the normal
action of most compilers. However the version of WATFIV used
stopped execution at underflows, and the following statement had
to be inserted after card MAI06200:

CALL TRAPS (0,0,99999,0,0)

The FORTRAN G and H compilers printed out diagnostics the first few
times only and then continued without further diagnostics. If you

have one of the few compilers that stops execution at underflows

or prints an unlimited number of diagnostics, you will also almost

certainly have an option or subroutine call like the one above

to prevent this.

The version of WATFIV used also required all DOUBLE PRECISION
functions to be explicitly typed (even built-in ones like DBLE).
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C ; e - I . BLkUl7uuy
C‘..'.O'D"lciﬂ.'ﬁl.‘ﬁ"...liﬁ.IO..OC..QQ‘Q.D'.DQ..D‘Q‘G.ti.l‘.l‘u"i’CIBLkUlauu

c““.‘......‘.‘.".QQ..QG.QQC.C"‘.‘."..Vyii“.<!!'7’4!.‘7‘.'9.‘.i‘.’...'O_CﬁQQBLKUlt,uu

C BLKU2GUU
C  THE FOLLUWING _JuSTRuCTjuNS QESCRIBE ALL POSSIBLE NECESSARY CHANGES ..._BLKU2100
C THAT YOuW MAY HavE 0 MARE v THE BLUCKOATA SUBPROGRamMe [(SEE THe BiLKU22UU
€ MALN PROGRAM_ALSUs]) — e BLKU 23UV
C BLKUZ500
PP h e s v s Lo s s s aar s Rsrsaeaitecstonel o raoe s nssreadpsotasntaianstasatasnstilnl2500
C ALL STATEMeWTS FUR READING CARDS AHU FOrR PRINTING OUTPUT Arg O BLKUZ26UU
€ THE FORe' ReAD (INREaUs9ae A WRITE(IWRITE caons .. THUS, IKE&u &N . . BirUejyuu
C IWRITE waY HAVE TO BE (rnANGED To THt VALUES APPROPRIATE FOr YOUR BLRUZ3UU
C COMPUTER CewTEn In THE rOL1LOWING STATEMELT .= S e - BLKU 220U
C BLKU30LY
DATA _JREAD/S/ s 1nRITELEL e e BUKU 3 U

4 BLkU3Z20J
(P e s aavet g s et eovNitulsnsutngefisstst sRgoassnsssResgonsasratstacruetsnwesi KUI3UU
C IN ThrE FOLWLUW]liWL STATEmeNT, NSI1G6FG AUST G8E SET TO THE NUMBER OF BLKU3aUU
€ SlumlFigani Flouned CArmlEo [N _TobE SInGiLek PRECISION FLUATING POINT BLAU3nUU
C ARITHHMETIC UF YOUR CUMPUTER (EesGes 7 FON Ibrl 360s 8 FOK BLNUG3&UU
C _UNIVAC 1]10¢s EfLe) = e e - _BWRU37uy
C BLRKU3nUU
VATA NSivFG/B/ . i e - BLR U 30U

C BLKU4CUY
c"'......l‘»'liOCQ.".Q“QC,’..l.“i.0.0....‘._.7'909'7..”l7!6‘.‘7.”.'.‘.‘g"ﬁ..'.bLhU‘j]UU
C IN Tnt FOLLUWIWG STATEMENT, LINEFG MUST BE ET TO TrE WNUMBER OF BLKbLy2uu
C LINES PFR PAGE aAVALLABLE FOK PRIaTEV QUIPUT ON_YOUR PrlI~NTEx.= .. . BLKU43U0U
[ BLRU44UU
VATA L 1:EPGr/02/ . . BLRO45UY

C BLKU4sUU
Cossraonrsryossnnogssioysne 1S44SR ORI AL C 22T I aCadoannatacnnuannntnaneBLKO4700
C NMaAX MUST ot GrtATer TraN On EWUAL TO THE MaXIMUM NUMBER OF DATA BLKO4sUY
C_ POINTS YOU wlli_tvig USts CORE STOUKAGE CAN . BE. SAVEU oY KEELPING — ... -BLKOHQUU
€ NMAX A5 LITTLE auUVE TwiS MAXIMUM AD> POSSIbLES IF YOU (PMARGE w~MAKX dLKUSDUY
€ IN_ IHE FOLLUwlwo SIATERENT. YOU nUST ALSUG . KESEL_THE 0iMgaSICnS. 45 BLKUSIUU
C DIRECTED I THE MALIN PRUGRAM = BLKUSB2UU
C — - - BLRUS 3L
DATA NMo&x/333/ BLKUS4ULY

. - —-BLKESSUU
c...Qlli...c..iCt‘0‘§¢Q.C.‘OQ.OC‘0'!.0...""..0.'1'C'v‘l'ﬁlﬂl."o"l‘.lﬁLKUSbUU
C_ NINIMA_MuUST BE_ GREATER.IMAN_UR. EwUAL TU_THE MAXIMUM valuk UF HINT . _BLAUSTOU
C YOU wiliL EveER uUSt wlTH REG[wWT=eTnUEes IF YOU CHANGE ’ BLKUSRUU
C NINTWMX_ b IHE PULLUWING STATEMEN]. YOU MuST ALSU RESET TIRE—— o BLRUDYUU
C DIMENSIONS AS LIRECTED (N THE HMAIN PRUGRAM = BLKUGCUO
C : —BLKUS UL
DATA NINTMX /107 BLKUbZ2ULUL

C - e e BLRUG3UU
C THiS IS THE ENu UF ALL POSSIBLE WECESSARY CHANGES YOU MAY navE TO gLKlbéquu
[9 MAKE I THe BLUCK DATA SUSPKOLRAR —_— . e BULNDOGUU
C : BLKO6sULU

Cr B IO s eI N e s BRIt NNEr PRI st e sl vl alsliativacetslatgssentassrarnsotesseBKUOTUL
CCOIQltntﬁgtﬁqﬁn'tﬁ--ocﬁi'oﬁng"-i.lﬁt00‘0.'0!00."..&.0.5&.;th¢«Q!Q§¢¢bLKU53UU
C X S . —.__BLKUBYUL

For Version 1A this involved only adding DBLE, DABS, and DEXP
to the DOUBLE PRECISION statement in subprogram ETHEOR. This
is not even legal in most compilers and since WATFIV is too slow
to be used routinely, the long list of DOUBLE PRECISION functions

for Version 1B will be furnished on request rather than here.
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D. INPUT DATA
In this section the input variables are defined and discussed

(in approximate order of input), the input data deck is described

and an example given.

D.1. Input vartable names

LABEL = up to 80 Hollerith characters that will appear as a heading
at the top of pages throughout the output.

It

LAST T (for .TRUE.) if the present data set is the last one in
the input deck.

F (for .FALSE.) if another data set(s) is to follow. As

il

many data sets as desired may be analyzed in one run.

REGINT = T if the data points are in "regular intervals" of t; i.e.,
if the Yi and the tk
group L there are NT (L) tk
TSTART (L) and TEND(L). For example, if the tk are
1,2, 4,6,8,10, 20,30,40,50, 100,200,300,400,500

then you could input REGINT=T, NINT=4,

are read in in NINT groups such that for each

running in equal increments between

L TSTART TEND NT
1 1. 2. 2
2 4. 10. 4
3 20. 50. 4
4 100. 500. 5

For this artifiq%lly small set there is no advantage to this, but
when the total number of data points N > 10+NINT, this input

option can not only save input effort (by not requiring the tk),
but much more importantly core storage (see card images
MATO3400-MAIO3900 in section C.2) and a great deal of computer time,
since long sums of exponentials can be evaluated by simple formulas
for geometric sums. For large N, where this is most important,

the data is often automatically sampled in such sets of regular
intervals. Test data set 1 in section D.3 provides another example

of this input option.
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The following conditions must always be satisfied:

NINTMX > NINT > 1 (see card images BLKO5700-BLK06200 in
section C.2)
NT (L) > 2
NINT
NMAX > % NT (L) (see card images BLKO4800~-BLK0O5400 in
L=1

section C.2)

TSTART (L) < TEND(L); however, there are no restrictions on
any relations between TSTART (L) and TSTART(K), TSTART(L) and
TEND(K), or TEND(L) and TEND(K), K#L. For example, TSTART(L+1) <
TEND(L) is allowed.

il

NOBASE T if it is known a priori that there is no baseline

component ag-
NONNEG = T if it is known a priori that aj > 0 for j >0; e.g., if
the o. correspond to concentrations or populations. If there is a

J
baseline component, oy is not so constrained.

PRY = T if the input values of Yy r tk’ and (if least squares

1
are read in) w 2 are to be printed out (as discussed

weights w X

k
in section E.3).

PRPREL = T if results of each iteration of the preliminary analyses

(as discussed in section E.5) are to be printed out.

PRFINL = T if the results of each iteration of the final analyses

of the raw data (as discussed in section E.4) are to be printed out.

T if the residuals of the fit of the final solution to the

PLOTRS
raw data are to be plotted by the printer (as discussed in section
E.2).

REPEAT = T if the final one- or two-page summary of the results
(as discussed in section E.1) is to be printed a second time.
This second summary can be detached from the full list and kept in

a more compact binder with summaries of other runs.
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NLAMMX = the maximum value of NA that will be searched for. The
following condition must be satisfied:

1 < NLAMMX < 5 (Version 1A)

1 < NLAMMX < 9 (Version 1B)
To preserve objectivity and check for systematic experimental errors
or unexpected components, it is always a good idea to choose
NLAMMX at least 1 larger than the maximum NA you expect. On the
other hand, since most of the computer time is usually spent looking
for components that are not here, it is a great waste to put in
a value of NLAMMX that is too large for the data to determine
(e.g., NLAMMX = 4 for 40 points with equally spaced t, and 5%

k
experimental error).

IWT = 1 for the normal (unweighted) case of unit least squares

weights w i.e., when c(yk), the expected error in yk,

k;
is independent of k.

l» NA _1
= 2 for w, = E ajexp(—kjtk) + ERRFIT ’

k
j=0

i.e., o(yk)a[y(tk)]yé, where ERRFIT is described below and
y(tk) is the exact value without random experimental error.
This weighting is appropriate (to a good approximation)

for many counting and correlation experiments.

NX .7_1

= =2 for Wy = % ujexp(—kjtk) + ERRFI%J P

j=1
. v
i.e., oly)=ly(ty)-agl 2

NX -2

= 3 for Wy = % ajexp(—Ajtk) + ERRFIT ’
j=0

i.e., o(yk)my(tk)
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IWT = -3 for w, = . -Ax.t
IZ 1 agexp (=hyty)
J:

+ ERRFIT r

i.e., o(yk)ocy(tk)—ocO

- 4 if you are going to input your own Wy
Thus, when IWT = + 2 or + 3, the w, are calculated from a smooth
least squares fit to the Yy rather than directly from Vi’ which
would lead to erratic and biased weights. However, even the smooth
curve could lead to a disastrously large Wi if it happened to come

very close to the x axis near a t ERRFIT is the standard deviation

K*
of the fit to the 10 Yy in the interval where the least squares

curve is closest to the x axis, and eliminates this danger.

MTRY = the maximum number of tries that will be made to find a
solution for a single value of NA during the preliminary analyses
of the transforms. If the first try fails, a grid search is
performed in (Aj—) parameter space and up to MTRY-1 tries are
started from points on this grid. You must input:

1 < MTRY < 45
However, these limits are extreme values; e.g., for MTRY = 1, no
grid search is performed at all. DISCRETE was tested on the 24
data sets used in I and II, as well as 15 more difficult cases
that could only be successfully analyzed by DISCRETE. Of these 39
unusually difficult cases, only 3 needed MTRY between 11 and 13; all
others worked with MTRY = 5 and nearly all with MTRY = 3. During
stages when DISCRETE is searching for more components than there
actually are, the computer time is often almost directly proportional
to MTRY, since MTRY unsuccessful searches are often performed.
Thus if the size of the problem makes computer time a major
consideration, MTRY = 5 should be adequate. If reliability and
thoroughness are of utmost importance an MTRY ~15 can be used.
An MTRY = 45 would be practically always a great waste of computer

time.

N = total number of data points. You must have
2+NLAMMX+2 < N < NMAX (see card images BLKO4800-BLKO5400 in

section C.2).
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T = array of tk values. They are only needed when REGINT = F, and
in this case they need not be in any special monotonic order and
need not have any regular spacing (duplicate values are even

permitted).

Y ='array of data points Y measured at tk'

W array of least squares weights Wy -

There is no need to normalize any of the input data like
TSTART, TEND, T, Y, or W. However, the number 1.E+20 has been

used throughout the program to represent an infinitely large

number and hence nothing should get larger than 1020. Since some of
the input quantities are squared and summed over N, it is best

to choose units so that all input values are between about 1.E-9

and 1.E+6 in absolute value.

D.2. Input data deck

Below are listed the data cards in order of input, the
FORTRAN FORMAT in parentheses, the input variable list, and finally
in parentheses when the cards are necessary.
Card 1 (80A1) (LABEL(J) ,Jd=1,80) (always needed)
Card 2 (9L1,313) LAST, REGINT, NOBASE, NONNEG, PRY, PRPREL,
PRFINL, PLOTRS, REPEAT, NLAMMX, IWT, MTRY
(always needed)

Card 3A (I5) N (only if REGINT=F)
Card set 4A (5E15.6) (T(J),JdJ=1,N) (only if REGINT=F)
Card 3B (I5) NINT (only if REGINT=T)

Card set 4B (2E15.6, I5) (TSTART (J) , TEND (J) ,NT (J) ,J=1,NINT)
(only if REGINT=T)

Card set 5 (5E15.6) (Y(J),J=1,N) (always needed)
Card set 6 (5E15.6) (W(J) ,J=1,N) (only if IWT=4)

Card 1 s
. only if the preceeding LAST=F

Card set 6 ==

Card 1 - Card set 6 comprise one data set. As many data sets
as desired may be run together; you must input LAST=F in all

but the last data set.
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D.3. Test input data

The card images of the test data provided on the tapes are

shown below.

“TEST DATA SET T = WITH PrOPEw UNTT WEIGHTING AND NORMALLY COMPREHENSIVE OUTPUT (Card 1)

T S IB3ITI3EN

FIFFTIFTTF 4 1 5 (Card 2)
T2 L 36)
«J000UD . +450000E02 10 ) fcard set 40)
s 750000EDZ «945000E03 30 )
e317951EU1 «d72385E01 ©¢238005¢61 0217513€01 «196817601\ I

0128123EU1I

e 38150U8EUU

W64 9749EUD

«1712¢7€01
«lU363YE01

»166732E01
¢ 91 1274€00

«160041€01 «152702E01
704 310nEDN

e793438L00

595533600
v 34BlLUEQD

*499157€£00
+273046t0U0

«ZHBI85EQU
«103332E00

°177709EGO
16106700

P133162Eu0

0768593E~1

+461291E00 «351976€00
2263267EGO ©266727£00
+155815E00 +817959E=1
+i19229€0U 26392758E-1

e5B7735E=2

v 199340E-1

+295760E"1

« 000600 T e292465E=1

(b sit 5)

TEST UATA SET 2 = wiTH INCURKECT wEIGHTING ANU ™MOST COMPREHENSIVE OUTPUT (Curd 1)

TEFFTTITT 4 =3 5 (card )]
40 (Cavd 3A) :

+000000 “%U0GUGEDT s 100000€Eu2 «150000£02 +200000€02

«250000EU2 «3UD0U0EYZ 5000UEL2 «400C00EDZ *450000EN2
<7500U0EDZ ™ TV IUB0G0ES T V1 3500CEUY Tel6s000603  Wi19s000E03 |
+225000£03 +2550UUEDS «255000EU3 +315000E03 ©345000E03 (am¢<uf Hﬂ}
+375000E03 THUSOUGED3 ~  w435000EU3 7 +465000603  +495000E03 ' '
¢525000E03 25550UULEDS «5n5000EU3 +615000£03 +645000EN3

T we75000EUT ¢ 70500UEDS o —
+825000EU3 « 85500003

¢ 795000EN3
+945000En3

“765000E03
«915000E03

« 735000603
+885000EU3

«3T7951E0T 0 272385E01
e183133E01 «1712¢7€01
s T28T23EU] «1U3639E01

«217513E01
+150041E01
«793438E00

238005801
-lbb?;{gg!
+91T2749€EU0

s 196817601\
« 152702601

«7ud3ineoo |
*351978E00 & {(on (ot Sl,.

e649749EQU 59553300 e499157EUC 46 1291E00 [
*+381508EUU 328 [UUELD «2730HsEu0” 263287600 «266727E00

»Z48385E0Y «177709€00 s 133162E0U «155815E00 +8179659E=1]

sTU33II2ETO 161087660 s766593E-1 119229800 e6392758-1 /T
¢5B7735E~2 e 19934UE~] 0295760¢%1 «000000 _e29246S€=1/

The raw data for two data sets is the same. It was simulated
using the uj and Aj parameters of Example II of I and II for

3 =1,2,3.
0.01[y(0)—u0]

Example II.

However, noise with a constant rms error =
0.03395 was added instead of the 5% rms error of

The baseline error was o, = -0.207. Hence data set 1

0
has the appropriate weighting (i.e., unweighted) with IWT = 1,
In set 2, REGINT=F in order

to test the corresponding part of DISCRETE and illustrate the input

while set 2 has an incorrect IWT = -3.

format for this case; however, this is actually a great waste of
The CPU time for this test data with the two sets
was 75 sec. on a UNIVAC 1108 using Version 1B.

computer time.

You should run this test data first and compare your results

with the output listing accompanying the tape. You should not

expect perfect agreement down to the last figure, especially for

quantities like N error estimates, etc., whose accuracy depends

¢I

on the accuracy of matrix inversions. This is especially true for

nearly singular solutions with a large N, (e.g., the third best

¢



20. May 1976 D.4(1)

solution on p. 27 of the output).

D.4., Modifying input format

All the input is read in subprogram DATAIO. If your raw
datd always has a special or unusual format or weighting, or
if it needs some preprocessing, you may wish to make changes in
DATAIO.
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E. INTERPRETING THE OUTPUT

In this section we discuss in detail the interpretation of
the output. Examples are drawn from the output from the test
data (page numbers refer to the output list sent with the tape).
The output is discussed in decreasing order of importance rather

than in order of printout.

E.1. Final summary of results

This is the most important output and is always printed out.
For test data set 1 it is on p. 7, and for test data set 2 it is
on pp. 27-28 and, because REPEAT = T, again on pp. 29-30. The
first line has the contents of LABEL. Then each of the five best
solutions are summarized, starting with the one chosen best, then
the second best and so on down to the fifth best (if there are that
many). The terms in the printout are defined below in terms of

quantities already defined above or in I or II.

ALPHA,LAMBDA = a?,xg of T (i.e., theos,A; of the final solution).

STD ERR = o(a?) and c(Ag) of I (i.e., the estimated standard error
of the respective uj and Aj).

These are obtained in the usual way (see ref. II1I3) from the
estimated variance-covariance matrix. Thus, ignoring the non-
linearity, the 95% confidence intervals are approximately + 20(a§)
and + 20 AY).

If youJare interested in a more detailed error analysis, you
can always use the aj,xj and the raw data as input for a straight-
forward, but time consuming, exploration of the contour lines of
the variance surface to get even more accurate confidence regions.
Furthermore, since Beale's N¢ is also printed out you could correct
approximately for nonlinearity [see ref. II14 and I.Guttman and D.
A. Meeter, Technometrics 7, 623 (1975) ]. However STD ERR is
probably adequate for most situations, especially with N¢ as a
guide. An N¢ > 1 indicates that the problem is so nonlinear that
even corrected confidence regions would be unreliable, and an
N, < .1 indicates that the corrections would be reliable but also

¢

small.
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PERCENT = 1000(@?)/]aj| and similarly for Ay

STARTING LAMBDA = the Aj that was obtained from the preliminary

least squares solution of the transforms, and was then used as a
starting value for the final least squares fit to the raw data.

" The main purpose and advantage of this method is the ability
to get good unbiased starting values.

Next to STARTING LAMBDA is printed (FROM FIT TO TRANSFORMS -

v TRIES), where v is the number of preliminary analyses that had to
be attempted before a solution was found. If no solution was found
after MTRY tries, v = MTRY, the set of Aj from the best fit to the
transforms is used, and (NO EXACT FIT TO THE TRANSFORMS FOUND) is
printed next to each starting Aj (e.g., see the third best solution
p- 27).

PNG (K/J) = P .(K[J) of eg. II19a.

Since this quantity is the key to deciding NA and the "best"
solution, the short discussion of II will be expanded upon.
PNG(KIJ) is the approximate probability that thesolution with
NA = K is worse (or less likely) than the solution with NX =J. It
is defined using Beale's nonlinearity parameter N¢, which he
intended to be used to modify Fisher's F distribution to approximately
correct for moderate nonlinearity in estimating confidence regions.

The extension to P is somewhat arbitrary: When comparing two

NG

solutions, is defined in such a way that the burden is placed

P
on the solut?gn with the larger NA to pass an F test that has been
corrected approximately for the added uncertainty due to the non-
linearity at this solution. For example, direct application of the
usual linear hypothesis test without correction, often failed because
too large an Nx was chosen (see also ref. II1). This solution had

a slightly better fit often because a small very short-lived false
component made an improvement to the fit to the first few data

points and then decayed away. As one would expect, a few data points
cannot determine an o and a A with very much certainty, and N¢
measures the large nonlinearity at such a solution. Just as with
rigorous linear hypothesis tests, when PNG rejects such a solution

it does not imply that the short-lived component does not exist;

it only means that there is not enough information in the data to

decide. Only further experiments (e.g., with the t range extended
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toward smaller t) could decide.

Although PNG might be better called a "guide" or a "criterion"
rather than a full-fledged "probability", hundreds of numerical
experiments have shown it to be very effective. Of course, just
as with rigorous hypothesis tests, the usual significance levels
should be considered. To stress this, whenever a second best
solution has a PNG < 0.95, messages are printed in the summaries
of the best and second best solutions reminding you to LOOK AT
SECOND BEST SOLUTION ALSO since it is still A SIGNIFICANT POSSIBILITY.
For example, PNG(3]2) = 0.581 on p. 27, means that one cannot say
with any reasonable confidence whether N, = 2 or 3. The incorrect

weighting has so distorted the solution éhat for NA = 3 there is

6 = 0.623, than in the
correctly weighted solution on p. 7 with N¢ = 0.027. The third
best solution on p. 27 is disastrously nonlinear with huge percent
errors, N¢ = 142., and PNG(4|2) = 1.000; however the UNCORRECTED
PNG (i.e., from the standard F test with N¢ = 0.) WOULD BE an

inconclusive 0.725 (as printed out at the far right of that line).

much more uncertainty, as reflected by N

NPHI = N¢ of IT (see above discussion of PNG)

ITERATIONS IN FIT = the number of iterations needed for the final

least squares fit to the raw data to converge to the solution.

STD.DEV. OF FIT = Oyy of eq. I27 (except that if NOBASE=T, replace
n—2NA—1 by n—2NA).
SIGNAL/NOISE RATIO OF FIT = |yext]/oyy, where y_ . is the y,

with the maximum absolute value. This quantity is only useful if

the rms errors of the Y, are independent of k, i.e., IWT = 1;
otherwise it is not printed.

Since the rms noise added to the test data was 0.01[y(0)—ao]
x 0.01yext, we would expect a S/N » 100 on p. 7, which is true for

the first two solutions.

LAMBDA HEID BETWEEN A_. AND X , where A_., and X are the
min — "max min max

limits defined in egs. II17 and II% (except that g = 0.02 if
NOBASE = T, and t1, t5 and tn represent the tk but reordered if
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necessary in monotonically increasing order with k).

During all the least squares analyses the Aj are constrained
to be within these limits. This prevents the Aj from entering
physically unfeasible (or, at least for the range of the tk’
physically indeterminable) regions, and from perhaps causing
arithmetic overflows. It also gives the solution a chance to re-

bound back into a feasible region after a bad iteration step.

PROB. RESIDUALS UNCORRELATED = 1—A(TK]N-—K—2) , K=1,2,...5, as
defined in eqgs. II20.

5

1 [1—A(TK]N—K—2)]
PUNC = 37383333 Z R

K=1

This is slightly different from the Punc
weights the average to better reflect the fact that the auto-

of eq. ITI20a. It

correlations with the shortest lags are the most powerful detectors
of nonrandomness in the residuals caused by poor fits to the data.
This is especially true for small N, as can be seen in the third
best solution on p. 7. Even a plot of the residuals would show them
to be strongly correlated, but, because N is so small, a lag of 4
or 5 spans too much of the data, and the correlation is not seen for
K =4 or 5. Thus for N < 100, even the above PUNC is too weakly
weighted and one should look more closely at K = 1,2, and 3.
Actually the whole test is quite weak for smalle.and there are in
general large fluctuations in the estimated probabilities versus K.
Except for small N, where you should mentally place more weight on
K =1 and 2 (especially if they are both 5 0.005, as in this
example) , you should only consider a PUNC < 0.050 a significant
indication that there are systematic errors in the data or that the
NA is too small. A PUNC > 0.050 is inconclusive. For MTRY > 5,
DISCRETE is quite thorough in finding all possible solutions and PNG
is a much more powerful test for deciding N, than PUNC. Thus the
main function of PUNC is to detect systematic experimental errors
in the data or non-exponential components.

The autocorrelation sums are evaluated in the order that the

tk and Yi were read in; i.e., there is no reordering with respect

¥ The least squares fit yields n residuals with only n—2Nx—1

degrees of freedom, and this introduces an extra correlation
into the residuals. This can cause a significant false reduction

in PUNC when (n—2Nx—1)/n is small.
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to tk. Thus, if for some reason the tk are not monotonically
increasing (or if REGINT=F, perhaps monotonically decreasing) with

k, PUNC loses its meaning.

E.2. Plot of residuals
If PLPRES = T, the weighted residuals dk (see eq. II18b) for

the best solution are plotted on the printer (see pp. 6 and 26).
The abscissa value is the subscript k; i.e., just as for PUNC, there
is no reordering with respect to tk'

The plots are useful for two reasons:

(1) You can quickly spot a gross error in the input value of
a Yyi the abscissa value gives you the subscript of the data point.

(2) Although PUNC is usually much more powerful at detecting
systematic errors, p. 26 illustrates one case where PUNC is quite
helpless and the plots are useful. When the wrong type of weighting
is used, there can be a steady increase or decrease in the
magnitude of the residuals, although they remain well scattered
about the value O. This is clearly seen on p. 26, but PUNC is
actually unusually large on p. 27. Even the nonrandomness of the
first 18 residuals is not detected by PUNC because their small

magnitude makes their contribution to the autocorrelation sums small.

E.3. Summary of input

The first page of output always starts with LABEL and the
input parameters (see pp. 1 and 8). If PRY = T, the tk'yk’ and

1
(if IWT=4) wk/2 are printed under the headings T, Y, and SQRT (WT) .

E.4. Final least squares analyses of the raw data
If PRFINL = T, the results of each iteration of the final

least squares fits to the raw data are printed (see pp. 2-5, 22-25).

The terms appearing in this output are defined below.

ITR = the number of the iteration

VARIANCE = v of eq. II18a.
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An asterisk next to the value means that the variance has
increased (e.g., see p. 5). This can occur if the normal equations
matrix is nearly singular, or sometimes at the end of the analysis

when the variance is already very close to the minimum.

DAMPING Q = the usual damping factor used to modify the length of
a Gauss step in nonlinear least squares (e.g., g on p. 155 of
ref. II3).

A value of Q consistently near 1 indicates the problem is
nearly linear, and a Q < 0.01 indicates a highly nonlinear situation
{of course, N, is a much more accurate measure of nonlinearity).
The value of Q giving the minimum v is first estimated by fitting a
quadratic polynomial usually to Vo=0" (dv/dQ)Q=o, VQ=1. If v for
this Q turns out to be larger than any of the v's used for the
quadratic fit, the Q with the lowest v is used and an asterisk is
printed next to it (as in ITR 5, p. 2).

BASELINE = . (only present if NOBASE=F).

0]

ALPHA,LAMBDA = current values of aj,kj.

If a Aj was temporarily held out of the regression, either
because it would violate a constraint or lead to a nearly singular
normal equations matrix, an asterisk is printed next to it (as in
ITR 6 and 24, p. 5). When an uj is held, it is obvious, since it

is set to zero (as in ITR 23, p. 5).

CORRELATION COEFFICIENTS Unless a nearly singular normal equations

matrix occurs (as on p. 5), a table is printed of the usual (see
ref. II3) estimates of the coefficients of correlation between

parameter pairs (as on pp. 2-4).

The remaining quantities, like NPHI, STANDARD DEVIATION, etc.,
have the same meanings and numerical values as in the final summary
(see section E.1).

This output is not essential, and some of it (like the asterisks
next to Q) was of interest mainly for development and testing.

However it does give more complete pictures of the final least
squares analyses. Furthermore, a final least squares solution that

is for some reason rejected does not appear in the final summary.
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The only way to know why it was rejected is to have PRFINL = T;
all rejections are indicated by a diagnostic message (as on p. 5)
or in the final iteration by an asterisk next to a Aj or an aj=0.
Another reason to have PRFINL = T is that it is conceivable
that the computation of N¢ for a nearly singular "solution" (more
likely a search stalled by the near singularity rather than a real
minimum) can cause an arithmetic overflow to kill the run. An
overflow has never occurred anywhere in DISCRETE so far, but values

as large as N, = 1O22 have occurred (twice in about 500 times).

¢

Since such a large N¢ obviously means an unacceptable solution and

since N, is only calculated at this final stage, you could simply

¢
repeat the run with NLAMMX = NA 1, where NA is value for which
N¢ overflowed. (The small probability that a still higher NA

might have given a good solution multiplied by the probability
of the overflow occurring is very small.) Without PRFINL = T,

you would not know the NA for which the overflow occurred.

E.5. Preliminary analyses

If PRPREL = T, results are printed for each iteration in the
preliminary analyses to determine the weights (if IWT = + 2 or + 3)
and for each iteration in the preliminary analyses of the transforms.
The output format is the same as discussed in section E.4. If
weights must be calculated or if one or more of the searches
requires all MTRY tries, there can be quite a bit of output (see
pp. 9-21). This was mainly of interest during development and

testing and is probably not of interest for routine data analysis.
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F. MISCELLANEOUS CONSIDERATIONS

F.1. Overlays

As illustrated in section A considerable core storage can be
saved with the use of overlays (different parts of the program
that are never used simultaneously sharing the same storage area).
The element .MAP on the UNIVAC tape does this. For other users,
the following diagram (not to scale) shows what subroutines can

share storage area:

Time

Main program, BLOCK DATA

DATATIO WEIGHT FANLY?Z YANLYZ

RESIDU, FISHER, PLPRES

l

LSTSQR, PIVOT, PIVOT1
(after the longest of
WEIGHT, FANLYZ, YANLYZ)

EVAR, ETHEOR | VARF | ANLERR

E—

N

Stor

y
age
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DISCRETE Update 1

A. A POSSIBLE MODIFICATION TO DISCRETE

The last paragraph on E.1(3) and the first on E.1(4) of the

user's manual explain that X is held between Amin and A In very

max”®
rare cases it can occur that these limits are too strict. 1In particular

ax’ A

can be held at Amax’ the solution rejected and not even appear in the

when there is a component with a very large amplitude and X > Am

final summary of results (see E.1.). This solution can be seen,
however, in the final least squares analyses of the raw data (see E.4)
if PRFINL=T. The following procedure is therefore suggested:
(1) Always first run DISCRETE in its original form with PRFINL=T.
(2) If the final summary of results does not list all NLAMMX
solutions, check through the final least squares analyses of
the raw data to see if any of the solutions missing from the
final summary have a VARIANCE significantly less than that of
the BEST SOLUTION in the final summary. If so, then check
to see if this missing solution has a LAMBDA equal to Amin
or Amax’ [Information on where to find the numerical values
of Kmin and Amax is given at the bottom of E.1(3).]
(3) Only if all of these conditions have occurred is it necessary

to run a version of DISCRETE modified as outlined below.

Xmin<xTNLAMN(J), J=1 if NOBASE=F
J=2 if NOBASE=T

A o« T1LAMX
max

[More details are given on E.1(3).}] The current values are set in
subroutine WEIGHT on card WI003200 in Version 1A and on card WTO03700

in Version 1B in a DATA statement:
TNLAMN/.2, .02/, TI1LAMX/2.08/

You can therefore compile another version with TNLAMN set smaller

(by up to a factor of . 10) or T1LAMX set larger (by up to a factor
of . 3). For reasons given in the first paragraph of E.1(4), it is
not recommended to routinely run DISCRETE with these modified limits;
it is only recommended in those rare cases that, after running the

normal version, all the conditions in (2) are satisfied.
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B. SOME MINOR CORRECTIONS TO THE USER'S GUIDE (20. May 1976)

D.1(4), lines 8 and 10: change y axis to x axis
" next to the last line: change 2°*NLAMMX+1 to 2-NLAMMX+2

I

E.1(1), lines 21 and 22: change + 30 to + 20

C. MODIFICATION FOR SPECIAL WEIGHTING OF PHOTON CORRELATION
SPECTROSCOPY (PCS) DATA

In PCS the measured second-order correlation function is often

represented as:

_ 2,
z(t3) = B {1 + 8, + [g(ty) +8,1°) , 3 =1, ..., N, (1

where B is measured, A1 and A2 are small unknowns that arise from
dust, stray laser light, etc., and g(t) is proportional to the
W2 1¢ A,

is ignored, DISCRETE can be used to fit g(t) to a sum of exponentials

absolute value of the first-order correlation function.

by rearranging eq. (1) to:

1 1]1/2

) = [B~ ) - ,
n(Tj) [ z(rj)
where

n(rj) = g(rj) + Az

The following input data should then be used:

Y(J) = [B_1Z(Tj) - 111/2

NOBASE = F
NONNEG = T
IWT = 2

With this input, only one change in subroutine WEIGHT is necessary.
Change card WT016600 in Version 1A or card WIO17000 in Version 1B from:

IF (IWT .EQ. 2) SOQRTW(K)=SORT (SQRTW(K))
to:
IF (IWT .EQ. 2) SORTW(K)=1./SQRT(1.+SQRTW (K)%*#%2)

Notes:

(1) If there is a j such that B—1Z(Tj)< 1, then you must discard
this data point and all later ones.

(2) If you want to ignore A2 (not recommended), then input NOBASE=T.
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(3) The above change in WEIGHT assumes that the variance in
z(1) satisfies
VAR(z) « z
It is then easy to show, using an approximation like eq. (13)
of ref. 4, that
VAR(n) « 14n 2
and that the above modification is appropriate. [SQRTW is the
square root of the least squares weight.]
(4) If A1 cannot be ignored, then DISCRETE can be run without

modification with input:

Y(J) = z(rj)
NOBASE = F
NONNEG = T

IWT = 2 [assuming VAR(z)« z]

However, if there is more than one exponential in g(t), the
extra exponentials due to the squaring in eq. (1) can make the
separation of the exponentials difficult. The best policy is

to do both types of analysis and compare.

D. NEW PROGRAMS TO BECOME AVAILABLE

Hopefully this year, as promised, 2.4 a general program will be
available for analyzing data represented by an integral equation of

the first kind:
y(1) = f K(x,T)E(x)ydx (2)

or data represented by a (possibly unstable) system of linear
algebraic equations. In eq. (2), y(1) is the data, K{(X,t) is known,
and f()) is to be estimated. The program is completely objective
and automatic, and linear equality and inequality (e.g., nonnegativity)
constraints on f(X) can be imposed.

Perhaps by next year, a general program is planned for analyzing

data represented by

2

A N

g
Y(T) - z ajf(leﬂf) + Z Bkgk(T)l
3=1 k=1
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where Ng and the functional forms of f(A,t) and of the gk(T) are
known and aj,Aj,Bk, and NA are to be estimated. Therefore exponentials,
but also convoluted exponentials, and other functions will be able
to be analyzed.
If you will have interest in either of these programs, let me

know: ‘

S. W. Provencher

MPI f. biophys. Chemie

Postfach 2841

D-3400 Gottingen

West-Germany
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DISCRETE Update 2

A. A BETTER REFERENCE AND NEW PROGRAMS

The enclosed reprint [1] contains a more definitive des-
cription of the methods used by DISCRETE and is a better lite-

rature reference than I or II on p. A(1).

There are two new programs that were discussed in [1] and
Update 1. The program for analyzing data represented by an
integral equation of the first kind [Egq (2) in Section D of
Update 1] is now available. In addition to photon correlation
spectroscopy and chemical kinetics (see references in [1]), it
has also been applied to the estimation of globular protein
secondary structure from circular dichroic spectra [2] and to
the analysis of equatorial fiber diffraction data [3] and can
be easily modified to handle many other problems. The second
new program is for the analysis of sums of one-parameter functions
(e.g., convoluted exponentials, as well as pure exponentials; see
the last equation in Section D of Update 1). It should be available
in 1981.

B. ALWAYS LOOK BACK FOR SOLUTIONS MISSING FROM THE FINAL SUMMARY
As already discussed in Update 1, there may be important pos-

sible solutions that are not printed at the end of the output in

the final summary of results (see Section E.1). If this final

summary does not list all NLAMMX solutions, then you should always

check back through the final least squares analyses of the raw data

(and, to be even safer, through the initial analyses of the raw data

and then the transforms) to see if there are any solutions with a
VARIANCE significantly less than that of the "BEST SOLUTION" in the

final summary. Any such solutions are often important possibilities.

They may have been rejected from the final summary of results

because
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(1) a A is held at an upper or lower bound, i.e., A=Amin or
Azxmax; this is discussed in Section A of Update 1; or
(2) the normal-equations matrix is nearly singular, e.g.,
two A's may be nearly equal.
Usually these conditions are a result of overfitting with too
many exponentials. In these cases the VARIANCE is not significantly
better than that of the BEST SOLUTION and this missing solution

should be rejected anyway. A typical example is on page 5 of the
output from the run with the test data, where (2) occurs with A3:X4.

Often (1) can occur with A:Amax if your data is really a sum
of convoluted exponentials and you have included data from the
early part of the curve, where the convolution is still affecting
the data. Several extra exponentials may be required to fit this
distorted early part of the data, and the entire solution is usu-
ally distorted. Your only possibility with DISCRETE is to throw
away more of the early data. However, it would be much better to
analyze all the data with the correct model of convoluted exponen-

tials using the program to become available in 1981.

If you are measuring the experimental curve by hand and you
tilt the curve with respect to the horizontal baseline, then the
tilted baseline can result in (1) with a A:Amin'

There are, however, cases where condition (1) or (2) occurs,
but where there is a significant decrease in the VARIANCE and where
the solution is meaningful. For example, as mentioned in Update 1,

there may really be a very large X with a large a and (1) can occur.

It also can happen that condition (2} occurs because there
really are two closely spaced A's. If both of the corresponding
o's are of the same sign, then it is usually not possible to decide
whether there are really two A's or only one, because the VARIANCE
has not decreased significantly. In this case, the solution with
the two closely spaced A's should be rejected in favor of the

simpler one with only one A . However, when the two a's are of
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opposite sign, then it is often obvious that the two closely-spaced
A's are necessary despite condition (2). To see this, consider the

following theoretical curve:

y(t) = oc1exp[—()\—6>\)t] + oczexP[—(Md)\)t], (1
6, <<A; a,>0; a,<0 (2)
y(t) = a]exp(—kt)[exp(éxt)—exp(—éxt)] + (u1+a2)exp[—(k+6x)t] (3)
y(t) = 2(oc1<3>\)te_>\t + terms of order [a1(6kt)3e_kt]
+ (o, ta,)expl- (A+6,)t] (4)

The function te *% in Eq (4) has a peak at t=A"', which is charac-
teristic of curves with two closely-spaced A's and with a's of

opposite sign. They can by no means be well fit by a single expo-
nential; the two closely-spaced A's are necessary to fit the peak.
DISCRETE is quite effective at finding these solutions, but the

two closely-spaced A's usually cause condition (2) because of the
nearly singular normal-equations matrix. Therefore these solutions

do not appear in the final summary of results and you must look

for them back in the final least squares analyses of the raw data.

Note from Egq (4) that when 6A<<A and 6At<<1’ that neither the
individual a's nor éx can be accurately determined. Their only
significant effects on y(t) are as the product a16A in the first
term on the right and as the sum (a]+a2) in the last term on the
right. Thus there can be a whole series of solutions, all fitting
the data, with very large o's and closely-spaced A's such that a16A

and (u +a2) are the required constants. However, X and (a1+a2) are

often ;uite accurately determined, and it can be useful to know
that there are two closely-spaced A's near A with total amplitude
(u1+u2). Unfortunately, no plots of these solutions are made; this
will be possible in the 1981 program. Your only guide is to see if
the VARIANCE is significantly better than that of the BEST SOLUTION,
especially if the plot, PUNC, etc. of the BEST SOLUTION indicate an

inadequate fit.
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C. CONSIDER ALTERNATIVE SOLUTIONS IN THE FINAL SUMMARY

The term NPHI was (somewhat arbitrarily) introduced in the
selection criterion for the BEST SOLUTION to discriminate against
solutions with nearly singular normal-equations matrices (see
discussion of PNG and NPHI in Section E.1). This is fine if the
resultant BEST SOLUTION adequately fits the data. (This you can
judge from the plot of the residuals, PUNC, STD. DEV. OF FIT, etc.,
as discussed in Section E.1.) However, we have seen above that
solutions with nearly singular normal-equations matrices are some-
times necessary to fit the data and that they may be meaningful,
despite great uncertainties in the absolute values of the A's or
a's. Therefore it was suggested above that you look back in ear-
lier parts of the output for solutions missing in the final sum-

mary of results. Similarly, if the adequacy of the fit with the

BEST SOLUTION seems guestionable, then you should also check to

see if any of the other solutions in the final summary of results

lead to a significantly better fit. To help you judge this, the

PNG that would have been obtained by ignoring NPHI and performing

a standard F-test [4] is printed after "UNCORRECTED PNG WOULD BE".
For example, by this criterion the (correct) SECOND BEST SOLUTION
on page 27 of the test-run output would have been preferred and the
THIRD BEST SOLUTION considered a significant possibility. (In this
case, however, comparisons of PUNC and STD. DEV. OF FIT do not seem
to indicate that the fit of the two-component BEST SOLUTION is
significantly worse than the three-component SECOND BEST, and you

should therefore prefer the simpler two-component solution.)

Of course, you should never use these criteria blindly. They
are based on assumptions (like independent normally-distributed
noise and the complete lack of systematic measurement or modeling
errors) that are practically never completely correct. Therefore,
your considerations should also be based upon all the prior infor-

mation that you have from other experiments and theory.
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DISCRETE Update 3

A. Address Correction Request

If necessary, please correct the address label used for this update, and send it to

Stephen W. Provencher

Max-Planck-Institut fiir biophysikalische Chemie
Postfach 2841

D-3400 Goéttingen

Federal Republic of Germany.

B. Corrections to DISCRETE

All the conditions corrected in this update occur only rarely and would lead to aborts,
not misleading results.

Please make the following replacements in Version 1B:

200 IF (N.GT.2+NLAMMX+3 .AND. N.LE.NMAX) GO TO 205 DAT10900
5205 FORMAT (///4H N =,I5,37H IS NOT BETWEEN 2+NLAMMX+3 AND NMAX =,I5) DAT11000

110 PLMTRY(J)=DMAX1(DBLE(LAMNMX(1,1)), EVR03500
1 DMIN1(DBLE(LAMNMX(2,1)),PLAM(J)+Q*DELTAP(J))) EVR03501
PLMTRY (J)=DMAX1(DBLE(RBLOKB(1)), VRF03800
1 DMIN1(DBLE(RBLOKB(2)) ,PLAM(J)+Q*DELTAP(J))) VRF03801

or make the following replacements in Version 1A:

200 IF (N.GT.2+#NLAMMX+3 .AND. N.LE.NMAX) GO TO 205 DAT10700
5205 FORMAT (///4H N =,15,37H IS NOT BETWEEN 2+NLAMMX+3 AND NMAX =,I5) DAT10800

110 PLMTRY(J)=AMAX1(LAMNMX(1,1), EVR03000
1 AMIN1(LAMNMX(2,1) ,PLAM(J)+Q*DELTAP(J))) EVR03001

PLMTRY (J)=AMAX1 (RBLOKB(60) ,AMIN1(RBLOKB(61) ,PLAM(J)+Q*DELTAP(J))) VRF03400

Replace the lines with the same labels as those in columns 73—-80 above. Note that
the number of lines is increased by 2 in Version 1B and by 1 in Version 1A, because of
continuation lines. For completeness, you should also change Version 1A or 1B to Version
2A or 2B, and April 1976 or March 1976 to December 1990 throughout the programs.

The replacements in DATAIO simply increase the minimum number of data points
by 2 to avoid problems in the analysis of correlations in the residuals in case you are using
an extremely small number of data points.

The replacements in EVAR and VARF prevent round-off error in large steps in the
least-squares analyses from taking A parameters out of bounds and causing an illegal
subscript reference. This can occur if the range of decades in your T values exceeds the
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number of significant figures in your REAL arithmetic, typically 7 decades. Data with
such wide T ranges are becoming more common.

C. Inputting Unfavorable T Arrays Can Cause Arithmetic Overflows

DISCRETE is quite robust to strange T arrays, but inputting identical T values when
they are among the smallest 5 can cause excessively wide allowed ranges of A, and inputting
5 identical minimum values can cause an overflow.

A far more common problem occurs when the beginning of a data set is discarded,

say, with T = nr,(n+ 1)r,(n+ 2)r,..., where n > 1, i.e., a data set with equal spacing, ,

in T, but with the first (n — 1) points missing. In this case, it is best to input a modified
T array,

T =T+ A. (1)

A component aexp(—AT) in T will become
aexp[-MTI" — A)} = o exp(=2T"), a’ = aexp(AA). (2)

Thus, inputting the modified array 7” results in the same X values, and you can easily
compute your original amplitudes as

a = a’ exp(—AA). (3)

In the above example, you should use A = —(n — 1)r so that 77 = r,2r,3r,.... With
a spacing in T or T” of r, it is feasible to measure as fast a process as about A = 1/r.
Substituting this A and A into Eq. (3), we have a = o’ exp(n — 1). If the first 100 points
are missing, then a will be €!%° times o/, and overflow can occur when the original T array
is used rather than 7",

In general, then, there is danger of overflow if your smallest T is at least several
times greater than the smallest spacing between the T values. You should then use a
A so that the smallest 7" is approximately equal to this smallest spacing. DISCRETE
actually computes this A and outputs it as DELTA with the transforms when you input
PRPREL=T. However, it’s usually clear what a reasonable value of A, if any, is needed.
With REGINT=T, the only change to your input data is to add A to the original TSTART
and TEND values.

D. Version 2 and Microcomputers

The changes in Section B result in Version 2 of DISCRETE. In addition, the magnetic
tape format described in Section B of the users manual should be corrected from 800 bpi
to 1600 bpi. Only ASCII tapes are now available.

Version 2B of DISCRETE is also available on 3.5-inch double-density (720 k-byte)
and 5.25-inch high-density (1.2 M-byte) MS-DOS diskettes. In this case the test data are
appended to the source code, so that there is only one file.

The test output from Version 1B is still sent out. The only significant differences are
the version number and the date.
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Most Fortran 77 compilers accept the Fortran 66 of DISCRETE without change. In
rare cases, it may be necessary to declare Hollerith strings that I stored in INTEGER
arrays explicitly as CHARACTER, but such changes are usually clearly indicated by the
compilation diagnostics.

Extremely poor quality Fortran compilers are widespread among microcomputers, and
errors in these caused aborts until a few years ago. However, these problems seem to have
been slowly corrected, and DISCRETE is running without problem on more than 100
microcomputers. Because of limitations in many microcomputer operating systems, it is
often necessary to break the code into a few segments for compilation and then to link the
object files together.

E. Truncating Convoluted Data

The data truncation problem discussed in Section C of this update is often a result of
discarding the beginning of the data because they are convoluted with a system response
function. This is bad because information is lost and because most people tend to do this
by eye and retain data that are still significantly distorted by the convolution. This can
result in artifacts with large A values. A package, SPLMOD [1,2], is available for analyzing
multicomponent convoluted exponentials, but it does not seem to be fully appreciated that
the response function must be very accurately determined, either directly or by reference
measurements [2], regardless of the method used. Otherwise, the same type of large-A
artifacts can occur.

F. Always Look Back for Solutions Missing from the Final Summary

The main problem still seems to be that users only look at the final summary on
the last page, and therefore miss important alternative solutions that did not meet the
stringent standards for entry into the final summary. This is discussed in detail in Sections
B and C of Update 2.
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