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ABSTRACT

Linear transform methods like moments, modulating functions, and Laplace trans-
forms are widely used for parameter estimation in system identification problems because
they can reduce a large set of overdetermined equations to a small set of linear and
nonlinear equations, which often have a very simple form and a unique solution.
However, the effects of noise in the data are neglected in deriving these equations. We
show (in terms of Fisher’s information measure, the generalized variance, and simulations)
that these methods can lead to very large errors in the estimates. We develop a new set of
transforms based on the idea of maximizing their Fisher information content. The
robustness of these new transforms, in contrast to the others, is illustrated by simulations
of nanosecond fluorescence decay and multicomponent exponential decay.

1. INTRODUCTION

Many system identification problems in the biosciences are reduced at
some stage to parameter estimation problems by postulating a model of the

form
NA

P(6,0)= 2 of(N,1), (1.1)

Jj=1

where f(\,7) is specified and the 2N, X1 vector @ has the a; and A
parameters as components. The problem is then to estimate the actual .
parameter values @ from-the noisy data

yk=)’)\(tk’0—)+£k’ ‘ k=l,...,Ny, (1.2)

or, in terms of N, X1 vectors, y=$(@)+e. For simplicity, we assume
throughout that the noise, & has a normal distribution with zero means and
with covariance matrix M, known to within a scale factor.
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The dynamic response of a linear system to a sudden perturbation, for
example, can often be described by (1.1) with f(A,)=e ™. If the impulse
response of the measuring instrument or the rise or decay time of the
perturbation is comparable to the response time of the system, then f(\, )
must be written as a convolution with the impulse response or the perturba-
tion, as in nanosecond fluorescence decay [1-8].

A weighted least-squares analysis of (1.2) yields the maximum-likelihood
estimates for the parameters 8, and this would therefore seem to be the best
procedure to use. However, such a nonlinear regression involves the com-
putation of §(@) and its partial derivatives at each iteration. When N,>>1
and f(A,?) is a convolution, this can be computationally expensive, espe-
cially since the analysis should be repeated from many starting points in
parameter space to have a good chance of finding the global optimum and
not just a local one.

Partly because of this, there has been great interest in linear transform
methods that apply a linear operator to reduce the data to 2N, points:

N)’
m= 2 Aues i=1,...,2N,, (1.3)
k=1
or n=Ay, where 4 is a 2N, X N, matrix. Often A4 is originally an integral
operator, but the numerical quadrature over the discrete data takes the form
of (1.3). The corresponding reduced model and data can be written %(8)=
A§(0) and n=AF(@) + Ae. Neglecting the noise and fitting the reduced data
to the model yields ‘

n=A4y(9), v (14)

2N, nonlinear equations in the 2N, parameters 8. In special cases, (1.4) can
have a very simple form and a unique solution (ignoring the sensitivity of
this solution to the noise). Examples are the methods of moments [1,2],
modulating functions [3], and Laplace transforms [4] when f(A,?) is a
convoluted or simple exponential.

Hartley [9] has shown that in general no sufficient statistics for parame-
ters associated with nonlinear functions exist; i.e., information is lost in
going from y to n, and accuracy is lost in solving (1.4) instead of (1.2). In
Sec. 2 we quantify this information loss in terms of Fisher’s information
measure [10, p. 41] and the generalized variance [11, p. 27], which are
closely related to the uncertainties in the parameter estimates. We show (in
Sec. 5) that the use of the above transforms can lead to a disastrous loss of
information and accuracy. In Secs. 3 and 4, we develop a set of transforms,
called “information transforms,” that are based on the idea of maximizing
their Fisher information content. In Sec. 5 we illustrate with numerical tests
‘the effectiveness of these transforms.
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In Sec. 4 we show how the data reduction in solving (1.4) with informa-
tion transforms rather than (1.2) permits a more thorough search for a
global optimum. The solution of (1.4) is then used as a starting estimate of 0
in a full least-squares solution of (1.2). The convergence is usually very
rapid because the starting estimate is usually very good. Since least-squares
procedures are used throughout, parameter constraints and extra correc-
tions for such effects as scattered light in fluorescence decay are straight-
forward to include [5,6]. A user-oriented FORTRAN IV program implement-
ing the method will be available on request.

Often N, is also unknown and it is also necessary to estimate the
minimum N, that is consistent with the data. We will not discuss this
problem here, but most methods require the value of the likelihood function
for each alternative N,; e.g., see [12—14]. Therefore, the estimation of @ is a
prerequisite to estimating N,.

Another approach to estimating N,, as well as 8, is to generalize the
model to

(0= fa)fr.1)dN (15)

and solve for a(\) [14—16]. This approach is interesting because it converts a
nonlinear problem to a linear (albeit ill-posed) problem with each A; in
principle automatically detected by a peak in a(A) at A=A;. Using improved
methods for solving for a()), this approach has proved very useful when Ny
is so large that the individual A; cannot be resolved and a(A) becomes
effectively continuous [17-19]. However, when the A; can be resolved using
(1.1), we have found the accuracy and resolving power of the information-
transform method to be far superior. In practice, it is often useful to analyze
a set of data in terms of both (1.1) and (1.5) to help decide which model is

more appropriate [17-19].

2. FISHER INFORMATION AND GENERALIZED VARIANCE

A very useful measure of the information about @ contained in the
reduced data % is given by Fisher’s information matrix [10, p. 41; 20], the
2N, X 2N, matrix 1(,4) with elements

_ ol ,0) al ,0
10.0),- [ 2200 9200

where the integration is over all possible 1 and, since y and therefore n are
normally distributed, the likelihood function is

L(n,0_ )dn, 2.1)
0=0

L(n.0)=[ 27)*" det(M,)]”exp[ —3(—)"M; ' (-], (22)
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where from (1.3) it is easy to verify that the covariance matrix of 7 is
M, =AMAT, (2.3)

where AT denotes the transpose of A. Substituting (2.2) into (2.1), it is
straightforward to show

I(6,4)=GIM'G,, .4

where G, is the 2N, X 2N, matrix with elements

on; ,
| [G,,]ij=[3}] . (2.5)
J lo=6

1(0,A) is just the normal-equations matrix that would occur at conver-
gence to =40 of a least squares analysis of (1.4) using the usual Gauss
approximation to the Hessian [21, p. 97]. The usual approximation to the
covariance matrix of the estimates of 8 is simply 7 ~1(8,A4); this is also the
Cramer-Rao lower bound for the covariance of an unbiased estimate of §
[10, pp. 41,77; 21, p. 41]. The generalized variance is defined as [20]

D(8,4)=det[ 17'(8,4)]. (2.6)

This determinant is a measure of the uncertainties in the parameter esti-
mates as well as the correlations between them. In particular, it is the
product of the variances of the canonical variables [21, p. 174], and
[D(8,A4)* is proportional to the volumes of the usual approximate hyper-
ellipsoidal confidence regions for the parameter estimates [20].

In parameter estimation problems, the criterion of choosing an experi-
mental design [11, p. 63] or a test input signal that minimizes the generalized
variance is referred to as “D-optimality” and is generally considered to be
the best criterion [20]. It therefore would be natural to look for a transfor-
mation matrix 4 that minimizes D(#,A4). Furthermore, the sizes of D(#,A4)
for the A-matrix for each of the transform methods mentioned in Sec. 1
provide useful criteria for comparing the methods and for optimizing any
degrees of freedom in them.

3. INFORMATION TRANSFORMS

In practice the data are preweighted so that M, is an identity matrix.
Thus, if the original data vector is z with nonsingular covariance M,, we
make the transformation

y=VE /)Ty, @3.1)
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where M, = VEV T is the eigenvalue decomposition of M,. (For uncorrelated
noise in z, M, = E is already diagonal and no eigenvalue decomposition is
necessary.) From (2.3) and (2.4) we then have

1(0,4)=GX(44™) ' G, 13.2)

First consider the problem of minimizing D(#,4) when N, =1 and we
only want to estimate A, from one transform. [In the least-squares analysis
of (1.4) or (1.2), we eliminate the linear parameters a; as implicit functions
of the A; [22,23, 14]. For simplicity we do not do so here.] Then 1(8,4) is a
scalar, the reciprocal of D(8,4), and from (1.3), (2.5), and (3.2) we obtain

- I(X,,a") =(a"§")’/(aTa), (3.3)

where a= AT, and § is also an N, X1 vector with elements

S [V _ [k
y""[ a;.l L_X,‘“'[ aA,k JX. : (34)

-Al

Clearly, I(A,,a") will be maximized with the transform a=y§’, where vy is an
arbitrary scalar.

This is just the transformation made in forming the normal equation in a
standard least-squares analysis of (1.2) at convergence to A,=A,. Thus, as
expected, the transform in least squares is the maximum-information one.
However, since A, is not known a priori, we must define a new transform at
each iteration of the least squares analysis, and it is this time-consuming
step that we wish to avoid.

Therefore, we maximize the expectation value

@MY= [ pA)I(A,aT)dN, (3.5)

where the intergration is over all possible values of A,, and p(}A,) is the
a priori probability density for A,. [In Sec. 5 we assume the usual case of no
a priori knowledge of @ and take p(@) as a constant that can be ignored.!]
We restrict a to a unit vector, since (3.3) is independent of the scale of a.
Then combining (3.3)-(3.5), expanding, and integrating term by term, we

'We assume that the observable range of A, is finite, and therefore that such a uniform
distribution p(A,) exists. This finite range is usually implied by the finite measurement
range of ¢ [14]. This assumption is also necessary for setting up the interpolation grid in
Sec. 4. If the range of A, really were infinite, then a change to a new variable would be
necessary.
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obtain the quadratic form

(I(a"))=a"Ba, ; (3.6)
where B is the positive semidefinite N, X N, matrix with elements

IfAnb) (A1)
—_ 2 J btk
By=d] f P 55 A (3.7)

(The constant af can be ignored here.) The eigenvalues A, of B are
nonnegative, and we arrange them in decreasing order with increasing k.
Let ¢, be the corresponding orthonormalized eigenvectors. Then

| (W)Y =M : (3.8)

and (I(a")) is maximized by a=1, [24]. We therefore define the informa-
tion transform as 4 =y7.

- Of all a orthogonal to ¥,, the one maximizing <{I(a”)) is ¥,, and of all a
orthogonal to ¥, and ¥, ¥, is optimal, etc. [24]. Since the {; are orthogonal,
the information carried by each of their n, =y¢{y is additive. Thus the total
(I carried by the first N reduced data points 7, is

N
IHy= 2 Me - (39)
k=1

If N=N,, then 0 would just be an orthogonal transformation of y; n would
contain all the information in y, and least-squares analyses of n and y
would be identical. Often, the A, rapidly decrease with increasing k, and
the fraction of the total {I) carried by the first N reduced data 7, obeys

IHp/L{THn~1 (3.10)

for some N<N,. This is analogous to the efficiency of the first N principal
components or Karhunen-Loeve transforms in linear problems, except for
two complications due to the nonlinearity: first, we are forced to use
expectation values, and second, even a maximum-likelihood estimate using
all the data generally only achieves full efficiency in the asymptotic limit of
large N, [10, p. 77].

When N, > 1, we need 2N, transforms for the 2N, parameters in (1.3).
Something like the above procedure would require optimizing an expression
containing a determinant, which is very difficult [11, Chapter 3]. Because of
(3.9) and (3.10) and the fact that the A; take the same form in each term in
the sum in (1.1), we take the transforms used for (3.9) and (3.10) to be our
information transforms; i.e., the 2N, rows of 4 are simply ¥1,¥3,..., iy,
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While certainly not optimum, we have found these transforms to be robust
and reliable in a wide range of applications. Some examples are given in
Sec. 5.

4. IMPLEMENTATION

Two computational problems must be overcome. First, the eigenvector
decompositions of M, and B would require too much computation for
N,=100. Therefore, the program reduces these matrices to n,Xn, by
selecting approximately only every [N, /n,]Jth row and column of M, and
only every [N,/n]th ¢ in forming B in (3.7). The full y-vectors are then
approximated by linearly interpolating between the n, elements in -the
eigenvectors actually calculated. An n, between 40 and 80 has always been
sufficient. This was tested by repeating the entire analysis with a larger n,
and comparing the results. This is to be expected, since the full ¢ are
suboptimal anyway, and reasonable approximations of the general forms of
the full ¥ should be sufficient.

The second problem is that the least-squares analysis of (1.4) requires 1,
and 99, /0N;, i,j=1,...,2N,, to be evaluated at each iteration. From (1.1)
and (1.4),

Nx

m:(0) = 21 ajsio\j)’ 4.1)
j=
N,

M= 3 AfOhie) (42)

Thus, although the number of data is reduced from N, to 2N, in going from
(1.2) to (1.4), each s;(A) requires N, functional evaluations, and the amount
of computation is the same. However, the program tabulates the s;(A) and
ds;(\)/dA at 125 equally spaced grid points covering the allowed region [14]
of the A-axis, once and for all, and does all subsequent evaluations rapidly
and accurately with seven-point Lagrange and three-point Hermite inter-
polation [25], respectively. If N, is large and f(A,7) complicated, this can
increase the speed by orders of magnitude. This permits a much more
thorough analysis with an elaborate grid search of parameter space and
many separate least squares analyses from different starting points in
A-space. The details of the least-squares procedure are given elsewhere [14].

5. NUMERICAL TESTS

Several hundred simulated data sets were analyzed; a few representative
results are given here. The first three cases are Examples F, H, and N of
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McKinnon et al. [7] simulating fluorescence decay data where a two-
component exponential decay is convoluted with the exciting lamp inten-
sity, F(7):

St)= [“Frjexp[ = Bs—)]dr, =12, .1)
F(r)=5.802r% %, (52)

where 4, =k, k=1,...,160, 8,=0.08, and we use A=In B to better cover the
wide range of B [14,16]. For Examples F, H, and N, 8,=0.05,0.02,0.05 and
@,/ a,=10,1,0.1, respectively. The a; were adjusted so that y(z,8)=10* at its
maximum. Under these conditions, we always have y(z,,8) > 100, and we
therefore use pseudorandom uncorrelated zero-mean normal ¢, with vari-
ance (#.,0) as a good approximation to Poisson noise.

Example 4 involves a sum of four exponentials:

SN ) =exp[ — Bt ]- (5.3)

For j=1,...,4, ¢;=1 and B;=0.004,0.02,0.1,0.5. There are nine groups of
data points with 40 in the first group and 15 in the others. In group m,
% — %—1=0.1X2". The range covered is #;,=0.2 to #,¢,=1538. This type of
logarithmic sampling is often used in dynamic studies of processes covering
a wide time range [26]. The g were pseudorandom independent zero-mean
normal deviates with a standard deviation of 0.01.

The following transforms were compared:

(1) Information transforms (INF): The integration limits in (3.7) were
from — oo to co; in Examples F, H, and N, (3.7) was approximated by the
trapezoidal rule over a sufficiently wide finite range of A.

(2) DISCRETE transforms (DIS):

A =cos[vr(n 1) lln((tz,‘//ttll)) } nodd,

Ay = sin[ n % }, n even. (5.9

These are based on the fact that the main features of the eigenfunctions of
the kernel (5.3) in the A and In variables are well represented by (5.4) [14].
The transforms are the basis of DISCRETE [14, 16], a widely used program
for the automatic analysis of multicomponent exponential decay data.

(3) Modulating function transforms (MOD) [3,7]:

Ay = wktI:"(tl\{v —4)", (5.3)
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where v,=4,4,4,4,5,8,14,32 and v,=32,14,8,5,4,4,4,4, n=1,...,8. In Ex-
amples F, H, and N, only n<4 are used. In (5.5)-(5.7), 4 is a discrete
approximation to an integral transform, and the wy=# —#_, (with 7,=0)
are just the approximate trapezoidal-rule weights.

(4) Laplace transforms (LAP) [4,7]:

A =wiexp[— (n—1)s't], (5.6)

where s’ =0.01 for Examples F, H, and N. In Example 4, s'=0.0178 gave
the best results of several s’-values tried. '
(5) Moment transforms (MOM):
| wete ™!

A= — (5.7)

y
2 Wit lyi

j=1

This is the usual form [1,2,7] except that the transforms are normalized to
one to prevent numerical ill-conditioning in (1.4) due to large variations in
the magnitude of the unnormalized moments.

A greater numerical stability in DIS, MOD, LAP, and MOM could be
obtained by working with a set of uncorrelated unit-variance transforms,
M,~'/?y, analogous to (3.1). In INF, M, is already an identity matrix. In
DIS the data are preweighted as in (3.1). No statistical weighting of the data
is possible with modulating functions, moments, or Laplace transforms.

From the above specifications, the generalized variance D(0,4) was
evaluated from (2.6) for the five transforms and also for the case of no data
reduction, i.e., when 4 is the N, X N, identity matrix and all the information
is used by analyzing the full data vector y. We call this last generalized
variance D (#). The ratio D(8,4)/ D, (@) is a good measure of the
information lost by the data-reduction transformation 4; the reciprocal of
this ratio is analogous to the efficiency [10, p. 39] of a single-parameter
estimator. Another measure is R(8,4)/ R.(@), the relative increase in the
estimated root-mean-relative-squared error:

L% o), )]

KOO\ 2 Gy T (ay

(5.8)

b

where the variance estimates ¢2(-) are the diagonal elements of the covari-
ance matrix for the 8; and «; parameters, and R.;,(@) is the R(0,4) when
there is no data reduction. The D-ratio directly accounts for correlations in
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TABLE 1

D(0,4)/ Dpn(0), the Relative Increase in the Generalized Variance, and (in
Parentheses) R(8,4)/ R;.(@), the Relative Increase'in the Estimated Root-Mean-
Relative-Squared Error, Due to the Information Lost by the Data-Reduction Trans-
forms

Examples
Transform F H N 4
Information 1.47 (1.12) 1.18 (1.04) 1.70 (1.19) 14 2.5)
DISCRETE 583 (2.19 3.83 (1.73) 3.20 (1.43) 10 (1.7)
Modulating functions 13.84 (2.57) 3.55 (1.39) 3.81 (1.64) 10" (10%
Laplace 2.09 (1.49) 1.07 (1.02) 1.11 (1.04) 294 (2.8)
Moments 1.13 (1.05) 172 (1.25)  1.17 (1.07) > 10%°

the estimates as well as errors and is generally preferred [20]. Note that both
ratios are invariant to multiplying the noise vector & by a constant.

These two ratios are given in Table 1. In the four-parameter examples, F,
H, and N, the information loss is not very serious, especially for INF, LAP,
and MOM, where the generalized variance is increased by at most a factor
of two. However, the information content deteriorates drastically with more
parameters. In Example 4, MOM and MOD are very poor, and LAP
required a careful choice of s’.

For each example, five sets of simulated data were analyzed. As ex-
pected, the observed D(#,4) and R(f,A) were consistent with Table 1. In all
five cases in Example 4, MOM, LAP, and MOD failed to converge because
of numerical ill-conditioning in (1.4), in spite of 18-significant-figure
arithmetic.

INF was consistently reliable in hundreds of other simulations as well.
DIS has worked well in thousands of analyses of multicomponent exponen-
tials but is not as robust as INF in other cases. In ranking the other three, it
is important to note that MOM and LAP as implemented here have no
cutoff errors, whereas the usual methods of moments [1,2] and Laplace
transforms [4] do. Thus, while MOM and LAP did better here with
fluorescence decay than MOD,? others [7,8] have found the opposite with
the usual forms of MOM and LAP. Furthermore, the extra flexibility in
choosing the functional form and parameters for modulating functions
means that a more effective set could yet be discovered. The criteria of

2The usual form of the method of modulating functions also uses successive derivatives
of the modulating functions as transforms. When all of these are also included in A4, then
D(0,4)/ D;() in Table 1 is improved to 1.90, 1.87, 1.52, and 10'2 for Examples F, H,
N, and 4, respectively. '
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minimizing D(8,4) (perhaps averaged over representative ) is natural for
choosing a set of modulating functions. This might be worthwhile if the
experimental design were nearly constant, i.e., with the same 7, and a
reasonably reproducible lamp flash. These modulating functions might then
provide a quick and simple means of preliminary data appraisal.

6. CONCLUSIONS

When the noise statistics are known to within a scale factor, least squares
(or maximum likelihood for nonnormal statistics) is unquestionably superior
to any linear data-reduction transform method, which inevitably must lose
information. However, for a given amount of computation time, the more
thorough search from several starting points in parameter space permitted
by the faster transform methods might be more effective in finding the
global optimum, especially for complicated f(A,?) or large N,. In this case
information transforms could be useful.

Transforms like Laplace, moments, and modulating functions are popu-
lar because they can lead to very simple equations, some with unique
solutions. However, this is misleading because noise is neglected in deriving
these equations, and these solutions can therefore be very poor. Although
these transforms can be useful in analyzing one- or two-component fluores-
cence decay data over a narrow time range, the straightforward extension to
other cases can lead to very large errors and is not recommended.

The Fisher information measure and the generalized variance provide
useful quantitative criteria for assessing transform methods and for choos-
ing the optimum set of transforms from a parametrized family.

REFERENCES

1 I Isenberg, R. D. Dyson, and R. Hanson, Studies on the analysis of fluorescence
decay data by the method of moments, Biophys. J. 13:1090-1115 (1973).

2 J. Eisenfeld, S. R. Bernfeld, and S. W. Cheng, System identification problems and the
method of moments, Math. Biosci. 36:199-211 (1977).

3 B. Valeur, Analysis of time-dependent fluorescence experiments by the method of
modulating functions with special attention to pulse fluorimetry, Chem. Phys.
30:85-93 (1978).

4 A. Gafni, R. L. Modlin, and L. Brand, Analysis of fluorescence decay curves by
means of the Laplace transformation, Biophys. J. 15:263-280 (1975).

5 A. Grinvald and I. Z. Steinberg, On the analysis of fluorescence decay kinetics by the
method of least squares, Anal. Biochem. 59:583-598 (1974).

6 A. Grinvald, The use of standards in the analysis of fluorescence decay data, Anal.
Biochem. 75:260-280 (1976). - ,

7 A. E. McKinnon, A. G. Szabo, and D. R. Miller, The deconvolution of photo-
luminescence data, J. Phys. Chem. 81:1564—1570 (1977).



262

10
11
12
13
14
15

16

17

18

19

20

21

22

23

24

25

26

/o~

STEPHEN W. PROVENCHER AND ROBERT H. VOGEL

D. V. O’Connor, W. R. Ware, and J. C. Andre, Deconvolution of fluorescence decay
curves. A critical comparison of techniques, J. Phys. Chem. 83:1333-1343 (1979).

H. O. Hartley, Exact confidence regions for the parameters in non-linear regression

laws, Biometrika 51:347-353 (1964).

S. D. Silvey, Statistical Inference, Halsted Press, New York, 1975.

V. V. Fedorov, Theory of Optimal Experiments, Academic, New York, 1972,

H. Akaike, A new look at the statistical model identification, JEEE Trans. Automatic
Control AC-19:716-723 (1974).

T. Soderstrom, On model structure testing in system 1dent1fxcat10n, Internat. J.

Control 26:1-18 (1977). j

S. W. Provencher, An elgenfunctlon expansion method for the analysis of exponential
decay curves, J. Chem. Phys. 64:2772-2777 (1976).

D. G. Gardner, J. C. Gardner, G. Laush, and W. W. Meinke, Method for the analysis
of multicompanent exponential decay curves, J. Chem. Phys. 31:978-986 (1959).

S. W. Provencher, A Fourier method for the analysis of exponential decay curves,
Biophys. J. 16:27-41 (1976).

S. W. Provencher, Inverse problems in polymer characterization: Direct analysis of
polydispersity with photon correlation spectroscopy, Makromol. Chem. 180:201-209
(1979).

S. W. Provencher, J. Hendrix, L. De Maeyer, and N. Paulussen, Direct determination
of molecular weight distributions of polystyrene in cyclohexane with photon correla-
tion spectroscopy, J. Chem. Phys. 69:4273-4276 (1978).

S. W. Provencher and V. G. Dovi, Direct analysis of continuous relaxation spectra, J.
Biochem. Biophys. Meth. 1:313-318 (1979).

R. K. Mehra, Optimal input signals for parameter estimation in dynamic systems—
survey and new results, IJEEE Trans. Automatic Control AC-19:753-768 (1974).

Y. Bard, Nonlinear Parameter Estimation, Academic, New York, 1974.

G. H. Golub and V. Pereyra, The differentiation of pseudo-inverses and nonlinear
least squares problems whose variables separate, SIAM J. Numer. Anal. 10:413-432
(1973).

J. A. Jacquez, A global strategy for nonlinear least squares, Math. Biosci. 7:1-8
(1970).

R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York, 2nd ed., 1970,
p. 113. .
F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, New York, 1956,
pp. 60, 314,

R. H. Austin, K. W. Beeson, S. S. Chan, P. G. Debrunner, R. Downing, L. Eisenstein,
H. Frauenfelder, and T. M. Nordland, Transient analyzer with logarithmic time base,
Rev. Sci. Instrum. 47:445-447 (1976).



