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REGULARIZATION TECHNIQUES FOR INVERSE PROBLEMS IN MOLECULAR BIOLOGY

Stephen W. Provencher and Robert H. Vogel

1. Introduction

In molecular biology, as in most natural sciences, the number of
indirect experiments involving ill-posed inverse problems 1is rapidly
increasing. Three of the most important types of inverse problems
involve either (a) severely ill-posed linear problems (e.g., Laplace
transforms 1in relaxation or correlation experiments); (b) very large,
and perhaps nonlinear, problems (e.g., estimation of three-dimensional
structure from x-ray diffraction or electron microscopy); or (c)
parameter estimation involving computationally complex models (e.g.,
multicomponent subnanosecond fluorescence decay strongly convoluted
with the instrument response or excitation function).

In this paper we shall discuss four approaches to these problems.
Two of these will only be outlined and two discussed in more detail.
Common to all of these approaches are two general strategies, the
principle of parsimony and the use of prior knowledge. Prior knowledge
(e.g., nonnegativity) can be very useful at eliminating the vast
majority of members from the (typically infinite) set of solutions that

fit the data to within experimental error.

The principle of parsimony says, of all solutions not eliminated
by prior knowledge, choose the simplest one, i.e., the one that reveals
the least amount of detail or information that was not already known or
expected. This is a standard strategy taken by statisticians and
experimentalists building models. It is strictly to protect against
artifacts and overinterpretation of the data. While the most
parsimonious solution may not have all the detail of the true solution,
the detail that it does have is necessary to fit the data and therefore
less 1likely to be artifact. The definition of parsimony obviously
depends on the problem and prior knowledge. Often smoothness of the
solution in a particular space or minimum number of parameters in a

model is an appropriate definition.
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All four of these approaches maximize an approximate 1likelihood
function, possibly modified by an additive regularizor term, which
imposes parsimony or yields an optimal estimate (in the mean square
error sense) using prior statistical knowledge of the mean and
covariance matrix of the solution [22]. In this way, only the
discrete, statistically weighted observed data points are used. This is
important because in many cases the statistics of the noise are fairly
well known and the noise is often strongly nonstationary. Furthermore,
this eliminates the need to extrapolate or interpolate data to estimate

(usually infinite) integrals in formal inversion formulas.

2. Constrained Regularization

Imposing prior knowledge of inequality constraints can greatly
increase the resolution and stability of the solution. We have found
this to be especially important when the solution has significant high
frequency content, e.g., sharp edges or isolated peaks [15, 18]. In
this section we mention two regularization approaches that can  impose
inequality constraints. They are described in detail elsewhere and will
be only briefly summarized here.

, A general-purpose regularization algorithm [16] and portable

Fortran package [17] has been developed for linear operator equations
subject to any linear equality or inequality constraints imposed by
prior knowledge. With numerically stable orthogonal transformations
[11] , the general quadratic programming problem is reduced to a ridge
regression problem, whose statistical properties have been widely
studied. The regularization parameter can then be chosen on the basis
of classical confidence regions and F-tests [13, 15].

For the package mentioned above, part of the computation time is
proportional to the cube of the number of parameters used to represent
the solution. Computations twﬁ: fewer than about 100 parameters can be
done economically. This is usually more than adequate for solutions in
one dimension, but not in two or three dimensions. Furthermore the
operator equations must be linear. Neutron and x-ray diffraction
experiments result in nonlinear operator equations, when the operator
produces the absolute value squared of the Fourier transform of the
desired electron density. In addition, the data often contains enough

information so that oﬂdo:v to oﬁaomv parameters are required to
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represent the solution. For these large, possibly nonlinear, problems a
very efficient optimization algorithm [4] using Frieden's maximum
entropy regularizor [7] has been developed. It has been applied to
estimating the structure of the Pf1 virion down to a resolution of
about 4 £ from x-ray fiber diffraction data [5]. Data from a heavy atom
derivative and the native structure were simultaneously analyzed to
help reduce the nonuniqueness due to the nonlinear operator (the so-
called phase problem). The algorithm has also been applied to three-
dimensional reconstruction from electron micrographs and oorwa be
applied to a wide variety of other large problems, particularly with

missing data.

3. Fast Spline-Model Method for Certain Separable Least Squares

Problems

Many commonly used methods for experimental data can be put in the
form

Ny

Yy = H ngxﬁyuv + e Xnd.....z<. (1)

o

where the y, are experimental data with unknown zero-mean noise

€ with finite variances and the Qu and »u are to be
estimated. The specified functions, mxﬁyv. are known, but can be

components,

expensive to compute. A common case is a convoluted exponential in fast

luminescence decay processes,

t
k
£,00 = % exp(-A1)E(t, -1) dr, (2)

(e}

where E(t) describes the impulse response of the instrument or the
spread of the excitation.

A properly Smwmrama least squares estimator is maximum likelihood
when the €, are normally distributed and approximately so when the €k
follow Poisson statistics [14]. However, because of the complexity of
eq (2) and the fact that z<. the number of data points, is typically
oﬁ_owV. such an analysis can be expensive. Furthermore, several

complete analyses starting from different points in parameter space

)
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should be performed to have a better chance of finding the global
optimum. Because of this, there has been considerable interest in
transform methods that apply linear operators to the data and typically
reduce the problem to solving a set of nonlinear equations. However, we
have shown that this can result in serious losses in Fisher information
and corresponding increases in the variances of the parameter estimates
[191.

In this section we outline a method in which the computation time
for a separable least squares analysis becomes independent of the
complexity of the model, mxﬁyv. and of the number of data points, after
some preliminary computations have been performed. The first step is
to approximate the functions mxﬁyv in an expansion of interpolating

functions of small support,

£.0) = ) BiBy (M) (3)

: i7i
i=1

We use cubic B-spline interpolation at about 40 knots equally spaced on
the z=1n) axis. This approximates model functions of the type in eq
(2) typically to within four significant figures. This is generally
more than adequate, considering the fact that neither the data nor the

model in eq (1) is so accurate anyway, since the model 1is only an
approximation to the true state of nature. Note that this step is
simply an interpolation of an exact analytic function. This is quite
different and much faster and more reliable than the more common case
of fitting splines to the noisy data.

The weighted least squares analysis involves finding the o and

J

»u that minimize the weighted sum of squared residuals,

Ny
- 2
w Ly, - WH @ i, 1% (1)

%
i

o z

i M

Newton and modified Gauss-Newton methods require many evaluations of S,
the Hessian of S (or an approximation to it), and the gradient of S

with respect to Qu and .. This requires computation of terms like




N N N N

Y b% B B
Y w0800 =X w BnBaOp) 2 BinBr(hy) (5)
k=1 k=1 n=1 m=1
zm Ng
uM m:Q»vM msC,.u.vnza. (6)
n=1 m=1
where
N
Y
n:? s WMH sxmx:mxs M
Another type of term can be similarly evaluated
z< Ny
Y w05 = 2 B (4, (8)
k=1 n=1
where
N
Y
a: = mmH 2x<me:. 9)

The me in eq (3) are independent of the data and weights. They depend
only upon the model and the experimental design, e.g., the spacing of
the ax ww eq (2). Very often for a particular series of experiments
these are always the same, and the array B can be computed once and for
all and stored. The complicated model functions in eq (2) do not have
to 'be evaluated again. Similarly the array C in eq (7) need only be
computed once if the Wi do not change. At worst it, together with the
vector d in eq (9), need only be evaluated once at the beginning of the
analysis of a set of data.

When occwox B-splines are used for the mwﬁ»v. the second
derivatives of mxn>v are continuous. Terms msmwomomm to eqs (5) and
(8), but containing first or second derivatives of mxﬁyv can be easily
and rapidly evaluated by replacing the corresponding wsﬁyv and msﬁyv
with their derivatives. The shift invariance of B-splines with equally
spaced knots further simplifies the computation. Because of the compact
support of the cubic B-splines, at most only 16 of the zmqudmoov terms
in the double sum in eq A\v are nonzero and need be evaluated.

{

o

1
i
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Separable Gauss-Newton algorithms, in which the pu are
effectively treated as implicit functions of the X, and determined by

J
the linear least squares conditions (e.g., with Algorithm I of [20] ),

have been implemented using formulas of the types above, as has the
full Newton method. What cannot be straightforwardly implemented is
separability using the numerically more stable differentiation of the
pseudoinverse [8] . However, key parts have been coded in double
precision, and numerous comparisons with conventional analyses without
the spline-model method showed excellent agreement of the parameter
estimates with both methods. Furthermore the computational priorities
and strategies are now completely different. The evaluation of wxﬁyv
and its derivatives in eq (2), which are ordinarily the major burden,
are now practically free. The main burden now is the matrix algebra.
Therefore a procedure like differentiation of the pseudoinverse with a

3

computational complexity proportional to N =0(10”) would result in a

major increase in computation. Y

Under typical conditions [25], our implementation of the separable
modified Gauss-Newton algorithm using the spline-model method results
in a speed increase of a factor of 0(100). This permits an elaborate
series of analyses to be performed from many different starting points
in' parameter space. This has been implemented in a portable user-
oriented Fortran IV program [24] and will be available on request. It

also permits a second term in eq (1),

N

g

M <.m—c... (10)
i=

where the mx» are known and the Yy are to be estimated. This is
important in allowing corrections for such things as background, and it
can be easily handled using formulas similar to eq (8). There,is also
provision for simultaneously analyzing several sets of data, each
having the same set of »u. vcn different Qu and Yo This can be very
useful, e.g. when spectroscopic measurements at several wavelengths in
kinetic studies are made to obtain more reliable estimates of the
parameters [10].

The spline-model method is a general approach for very rapidly
evaluating the objective function in eq (4), as well as its Hessian and

gradient. It may therefore be useful in other optimization or parameter
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estimation procedures, such as homotopy methods, which can involve a

very large number of evaluations of the objective function.

4, Three-Dimensional Reconstruction from Projections of Disordered

Objects

4.1 1Introduction

5

Under proper imaging conditions, an electron micrograph yields an
estimate of the projection of the electron density of the object. The
estimation of the three-dimensional (3-D) electron density from a
series of images with the stage tilted to different angles is then
formally the same as the inverse Radon transform problem in computer
assisted tomography (CAT). However, there are two important additional

difficulties. The first is limited data; the stage can only be tilted

over a limited angular range, typically Almoo. 60°) rather than
Anooo. moov. This makes the problem even more ill-posed and seriously
diminishes the practical applicability of standard Fourier
reconstruction techniques. Second, and most important, is the poor

quality data. The objects being studied typically have maximum linear

dimensions of oAAO|mV cm rather than 0(1) cm as in CAT. This means that
the mass of the object is oﬁ_onﬂmv times that in CAT. Thus, in general,
by the time enough electrons would have interacted with the object to
yield sufficient information, it has 1long since been completely
destroyed.

The most successful strategy to reduce this problem has been to
form regular two- (or three-) dimensional arrays of identical objects
(particles), reduce the electron dose, and combine the information from
the many particles using Fourier methods [23]. However, in general, as
the size and complexity of the particle increases so does the
difficulty of forming highly ordered regular arrays.

The general problem of combining the information from a number of
identical disordered objects with unknown orientations is much more
difficult because the relative orientations must be estimated, as well
as  the electron density. We outline a method for doing this with data
from a relatively small number of tilt angles over the limited angular

range available in electron microscopy.
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4.2 Theory

The electron density, y(r,6,¢), is expressed as a truncated

expansion of a complete orthonormal set of functions,

y(r,6,0) = M“ «:uaeswaﬁ1.o ,0), n=1,2,...,N, 11)
nlm
where
¥ in(r0,0) = xspmspﬂqvm%Am.ev. 1=n-1,n-3,...,1 or 0, (12)
m=-1,-1+1,...,1,
K, = {210 (n=1+1)/21/T[ (n+1+2) /21172, (13)
¥ _ im} : .
1 8,p) = szvH (cos 0 )exp(im o), (14a)
Ny s {(21+1) (1=m}) 1/ T4n (L tmi) 113172 (14b)

1+1/2 2

o1 2
w:HAﬁv = r exp(-r \mvrA:|H|Av\mA1 ), (15)

rwﬁ.v are the generalized Laguerre polynomials and v%A.v the associated
Legendre polynomials defined in egs (22.3.9) and (8.6.6) of [1],
respectively, and the Ypim 2T€ to be estimated.

m
These basis functions in eq (11) are the eigenfunctions of the

Schr8dinger equation for the spherically symmetric harmonic oscillator
(see p. 1663 of [12]). They have the following two useful properties:

(a) They are eigenfunctions of the Fourier transform, i.e.,

3 vw\mwsld

[ explir+R)Y ., (r,0,0)d°r = (2n ¥o1n(Re80). (16)

nlm nl

This is most easily evaluated by changing to Cartesian coordinates, in

which the variables separate and V¥ is just a product of three one-

nlm
dimensional harmonic oscillator wavefunctions (see p. 1679 of [12]1 ).
This makes the application of the projection-slice theorem [2], which

says that the Fourier transform of a projection is a central slice
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(planar section) through the 3-D Fourier transform of the density, very
easy. Thus we can compare the Fourier transform of the projection data
directly with the 3-D electron density in eq (11) using eq (16).

(b) All of the angular dependence is in the spherical harmonies,
«%Am.ev. whose behavior upon rotation of the coordinate system can be
easily expressed and rapidly computed using the rotation operators for
spherical harmonics [3,9].

The Fourier transform of the projection data can then be modelled
by transforming eq (11) and rotating the coordinate system through the
known angle, T, of tilt about the x-axis (arbitrarily defined to be the
tilt axis) and through three (unknown) Euler angles, w, that reorient
the particle's coordinate system to coincide with a reference system

defined below,

n=N 1
Flo,iu,0) = (2032 X v 471 ¥ rY ()
~ nlm i m'm ~
nlm m'=-1
1
x X mw__.a.?im.ﬁ T/2)¥ | L(R/2,0), an
m"=-1
1

where the Euler angles and rotation matrices ma.sﬁ.v are defined by
Brink and Satchler [3], which is the only source we could find that was
free of errors or inconsistencies. The variables p and ¢ on the left-
hand side are just the polar coordinates in the x-y plane and are
numerically equal to R and ¢ on the right-hand side.

The term f:wa=Am‘ﬂ\m‘ev represents a two-dimensional slice through
the x-y plane. Thus this uses the projection-slice theorem assuming
that the projection is parallel to the z-axis of the coordinate system
used in eq (11). For each particle, the unknown vector, w, of Euler
angles rotates the coordinate system of that particle so that this is
the case. If all particles had the same orientation, then no w would be
necessary since with large enough N the <:Ha could represent the
particle in any orientation. In practice we have always used this
reasoning and arbitrarily fixed the coordinate system of one particle
to be the reference to which all the others are rotated. Thus with N

p
particles there are only szldv vectors w. However, with a relatively
small N, it might be better to allow all the particles to rotate so
that the 1limited number of terms in eq (11) can be most efficiently

used. This would in any case be necessary if one were using only a
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subset of the spherical harmonic terms to impose a particular symmetry,
e.g., icosahedral symmetry [6], if the exact orientations of the
symmetry axes were not known.

Despite the relatively compact and computationally efficient model
in eq (17), the computational burden in a straightforward weighted
least squares analysis would be overwhelming. This is mainly because of
the number of data points and the five-fold sum in eq (17). A typical
image 1is digitized to a 64x64 array and a discrete Fourier transform
would yield the same number of values, i.e., oﬁdozv. For 20 particles
and 9 tilt angles, this would amount to a nonlinear least squares
analysis with OAAOmV rows. This amount of data can be reduced by a
factor 0(100) with almost no loss in information by applying an
orthogonal transformation based on the orthogonality properties of the
basis functions with respect to ¢ and a polar coordinate sampling
theorem [21].

All of the ¢ dependence in eq (17) is in the term exp(im®) in the
spherical harmonics in eqs (16) and (12). Because of the orthogonality

properties of this term, the circular transform,
-~ 2m -~
Falpiw,©) = (172m) [ exp(~ifie)F(p, 03w, 1)d0, (18)

eliminates the innermost sum in eq (17) and reduces to

n=N
- . _ 3/2 .n=1 il
Falp 30,0 = 2032 X v K15, (0N aP1 ™ (0)
nlm
1
x X BN, (R (-1/2,7,1/2) (19)
m'=-1

Furthermore there are only nonzero terms when IMi<N; i.e., there are
only (2N-1) fi values needed to represent all the information relevant
to the model in eq (11).

The radial variable, p, can also be sampled. Although neither the
model in eq (11) nor its Fourier transform in eq (16) are of compact
support, they both can be considered to be approximately so. This 1is
because the radial parts of both the function and its Fourier transform
are strongly damped toward zero with increasing r or R by the Gaussian
factor in eq (15). We denote by r and p

max max’
of r and p beyond which the model and its transform can be considered

respectively, the values
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to be negligibly small compared to the maximum electron density (in the
model) or the noise components (in its transform). These cutoff values
depend weakly on the value of N in eq (1) and the signal-to-noise ratio
in the data, but p =4 and r =6 have been found to be sufficiently

max max

large for N<13. Space-limiting the model to 1MHamx. the  polar

coordinate sampling theorem [21] says that all the information is

obtained by sampling mmﬂo"m.av at p values given by

Pk = wa\1smx. (20)

when Nax is the kth zero of the Bessel function uaﬂov. Band-limiting

the model to Fourier components with onsmx

Fourier components of the signal in the data become negligible compared

(because the high-frequency

with the components of the noise) yields a greatly reduced number of

data points for each image, 0(100) rather than oﬁdozv.

~

19xn8.av = maﬁomxﬂw.aV. 21

In order to fit the data to the model in eqs (21) and (19), the

data must be transformed as follows:

2m
maAoﬂw.av = (1/2nr) %o aemxuﬁlwmava am1 mxuﬁwm.mvmﬁx.<v. (22)

where f(x,y) is used to represent the data because the images are
scanned with a Cartesian grid. The integral over ¢ can be performed

analytically (see pp. 1678-1680 of [12]) to yield

a Hsmx 2T
Fa (w,t) = i r dr r dpdalro s Yexp(-ifio) £(x,y). (23)

A

This transform is orthogonal with respect to both of the indices M and

k. The orthogonality with respect to Ml is clear from the orthogonality
of exp(-ifi®) over the interval ¢c[0,2n]. The orthogonality with respect
to k follows from a change of variable to ¢n1\1amx. eq (20), and the
standard orthogonality relation for integrals involving =zeroes of

Bessel functions, eq (11.4,5) of [1],
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1
- '
[ bIa(2a )00 (20 (£)dL = O, k#K'. (21)

In practice, eq (23) is evaluated by numerical quadrature, and F, the

vector of maxﬁw.av values is simply the linear transformation

F = Cf, (25)

where f is the vector of image data points, f(x,y), and the matrix C
(typically about Aocxmzmv accounts for the quadrature weights, the
Cartesian grid of the data points, and the kernel of the transformation
in eq (23). To within quadrature error, the matrix C 1is Hermitean
because of the orthogonality of the integral transforms mentioned
above. This is very convenient, because, if the covariance matrix of f
is an identity matrix, the covariance matrix of F is diagonal. That is,
uncorrelated stationary noise in the projection data f remains
uncorrelated in the reduced data F, and one can perform a simple
weighted least squares fit of F in eq (25) to the model in egs (21) and
(19). Otherwise one would have to work with a non-diagonal covariance
matrix in the least squares analysis. The assumption of uncorrelated
stationary noise is often not bad, even when the total signal is
Poisson, because a large background must often be subtracted from the

total signal to obtain f.

4.3 Practical Aspects

The matrix C in eq (25) typically takes about 20 min of CPU time
to compute. However, it depends only on such things as T ax and
oamx and the number of data points in the scanning grid for nsm images.
These usually remain the same from one experiment to the next, and C
can therefore be computed once and for all and stored. The reduction of
a complete image to F in eq (25) then takes only a few seconds of CPU
time. From this point onwards, only the reduced data, F, is used.

All of the images must have the same origin. Fortunately, the
center of gravity of a projection is independent of the orientation of
the particle, and this is used as the origin. This is also a good
choice in that it generally results in relatively rapid convergence of

the expansion in eq (11). In practice the estimation of the center of
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gravity of each image must be done with care, after subtraction of the
background.

A more general set of functions than eawsﬁﬂ.o.ev in eq (12)
contains a scale factor multiplying r. We have arbitrarily set this to
one. However, from section 4,2 it is clear that the r values in the
input data must be scaled so that the maximum extent of the projections
in the images is about 15mx.

Regularization is imposed by the upper limit N. We start with a
relatively small N, typically 5, and increase N until the decrease in
the thWSﬁma sum of squared deviations of the fit to m (in a plot
versus N) does not seem to be significant. Classical F-tests might also
be helpful. Experience so far indicates that imposing parsimony by
truncation is not as bad here as truncating Fourier series or
transforms, but slightly smoother solutions could probably be obtained
by a more gradual tapering of the expansion in eq (11). However, the

number of y parameters is N(N+1)(N+2)/6, and such a gradual taper

would be <Mwﬂ expensive except for very low resolution solutions.
Furthermore the stepwise increase in N results in a natural series of
solutions with increasing detail. This can be seen from the natural
hierarchy of increasing complexity of the spherical harmonics or the
wave functions in eq (12) with increasing 1 or n. We have performed
analyses with N as large as 13 (with U455 «
(with 165 k<:Ha

structures to within the resolution attainable in electron microscopy.

nlm parameters), but N=9

) is often sufficient to represent reasonably large

There are generally far more linear (y parameters than

:wav

nonlinear (y) ones. If zu is the number of particles being analyzed,

then there are either wﬁzvlav or wzu nonlinear parameters, and zv
seldom exceeds 20. Therefore a least squares analysis exploiting
separability should greatly imprcve the rate and region of convergence.

Because of the large size of the problem and the formulation,
nonnegativity was not imposed. This is not as serious as in other cases
because of the relatively low resolution attainable in electron
microscopy. -

The disorder of the particles prevents the problem from being
reduced to a series of independent two-dimensional reconstructions of
slices through the 3-D structure, as is often possible in CAT. The
need for a direct 3-D reconstruction brings with it an wunavoidable

added computational burden, but it does have the advantage that
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smoothness of the entire 3-D structure tends to be imposed, and this is
generally not the case when a series of two-dimensional slices are
reconstructed independently.

One of the main advantages of this formulation in terms of a
straightforward problem in parameter estimation by weighted least
squares 1is that the approximate covariance matrix of the parameter
estimates is obtained. This gives a very clear indication of the
reliability of the estimated structures and a warning when N is getting
too large. It also permits general theoretical studies of the effects
of such things as the number and range of tilt angles and the
disorientation of the particles on the uncertainties in the estimates.
It turns out that disordered particles can actually bring a benefit in
that a wider range of views are obtained over the limited range of tilt
angles available than if all particles had the same orientation. 1In
fact simulations indicate that the Fisher information content for zu

randomly oriented particles can be almost as 1large as that for
2

zu particles of identical orientation, even including the extra
uncertainty due to the extra w parameters for the disoriented case.

For a set of particles with identical orientations and an upper
limit of N in eq (11), precisely N different tilt angles are needed;
otherwise the parameter covariance becomes singular and the parameters
indeterminate. With disoriented particles, this requirement can be
relaxed, but it is still recommended. It is important to be able to use
as few tilt angles as necessary. This permits the total dose of
electrons that the particles can tolerate to be divided into 1larger
doses for each tilt angle. This makes it easier and more reliable to
subtract background, to locate the center of gravity, and to perform
the rest of the steps in the analysis.

The information content deteriorates as the range of tilt angles
is restricted, but more slowly for disordered than for* ordered
particles. In fact, simulations indicate that a tilt range of
ﬁlzmo.zmov is often sufficient with a set of disordered particles. It
would be advantageous if the commonly used extremely oblique tilts in
the range Almoo.moov could be avoided.

Another advantage of the statistical treatment of the problem is
that the large data 1ma:owwo: in eq (25) is immediately demanded by the

analysis. Sampling F(p,®;w,7) in eq (17) more finely resulted in a
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practically singular covariance matrix for the weighted least squares
analysis, and it was apparent that a sampling theorem had to be used.
The method has been extensively tested with simulated projections
and added noise of the level typically found in electron micrographs,
and the results have been very encouraging. However, it is necessary to
make tests with real micrographs containing the numerous systematic
,errors and artifacts that occur in electron microscopy, and this has

been started.
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