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CONTIN is a portable Fortran IV package for inverting noisy linear operator equations. These problems occur in the
analysis of data from a wide variety of experiments. They are generally ill-posed problems, which means that errors in an
unregularized inversion are unbounded. Instead, CONTIN seeks the optimal solution by incorporating parsimony and any
statistical prior knowledge into the regularizor and absolute prior knowledge into equality and inequality constraints. This can
greatly increase the resolution and accuracy of the solution. CONTIN is very flexible, consisting of a core of about 50
subprograms plus 13 small “USER” subprograms, which the user can easily modify to specify special-purpose constraints,
regularizors, operator equations, simulations, statistical weighting, etc. Special collections of USER subprograms are available
for photon correlation spectroscopy, multicomponent spectra, and Fourier—Bessel, Fourier and Laplace transforms. Numeri-
cally stable algorithms are used throughout CONTIN. A fairly precise definition of information content in terms of degrees of
freedom is given. The regularization parameter can be automatically chosen on the basis of an F-test and confidence region.
The interpretation of the latter and of error estimates based on the covariance matrix of the constrained regularized solution
are discussed. The strategies, methods and options in CONTIN are outlined. The program itself is described in the following

paper.

1. Introduction

Most experiments in the natural sciences are
indirect. That is, the observed data, y,, are related
to the desired function or vector x by operators
o,,

w=0x+¢, k=1,...,N, (1.1)

B4

where the €, are unknown noise components. One
is then faced with the inverse problem of estimat-
ing x from the noisy measurements y,. Often the
O, are approximated by linear integral operators,
and eq. (1.1) can be written

NL
yo= (R s\ dA+ S LBte. (1)

a i=1
where the O, have been replaced by the known
functions F(\) and x has been replaced by the
function s(A), which is to be estimated. The extra
optional sum over the known L,; and N, unknown
B, permits, for example, a constant background

term, B3,, to be included by setting N; =1 and all
the L,, = 1.

CONTIN is a general program package for
solving eq. (1.2) and systems of linear algebraic
equations. Eq. (1.2) includes Fredholm and Volt-
erra integral equations of the first kind, and it
occurs in far too many kinds of experiments to
attempt to list here. However, five general types of
causes of eq. (1.2) are: (1) imperfect input into the
system being studied, e.g., a spread in energy,
space or time of an input that should be perfectly
sharp, as in polychromaticity and slit width and
length effects in X-ray and neutron scattering [1];
(2) imperfect detection of the output of the system
being studied, e.g., when the impulse response of
the detection system has significant spread due to
optical, mechanical, electronic of physical limita-
tions, as in convolutions of energy spectra with
detector responses [2]; (3) imperfect systems being
studied, e.g., due to practical requirements of mass
or geometry, as in the use of thick (rather than
infinitely thin) targets in cross section and decay
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studies [3]; (4) indirect measurements — even if
causes (1)—(3) were negligible, the function of in-
terest is still often related to the data by eq. (1.2),
e.g., by a Fourier transform in diffraction experi-
ments or a Laplace transform in relaxation experi-
ments [4]; (5) multicomponent systems can be a
mixture of a large number of independent compo-
nents, each with its characteristic response to the
input, and the object is to estimate the concentra-
tion distribution of the components, e.g., with
photon correlation [5] or circular dichroic spec-
troscopy [6]. Often several of the above causes are
present in a single experiment. However, if they
are all described by linear integral operators, then
they can be combined into a single operator to
form eq. (1.2), as with low angle scattering data
requiring correction for slit width and height,
polychromaticity and Fourier transformation [1].

For most F,()), estimating s(A) in eq. (1.2) is
an ill-posed problem. This is best illustrated by an
example [7,8] using the version of the Riemann-
Lebesgue lemma that says that, in the usual case
that the F,(\) are absolutely integrable,

w— o0

lim bek(}\)sin(wA)dAZO. (1.3)

This means that, even for arbitrarily small €, 70
and an arbitrarily large amplitude A4, there still
exists an w such that s(A) + 4 sin{wA) still satis-
fies eq. (1.2) to within the experimental errors, ¢,.
Thus there exists a large (generally infinite) set, £,
of possible solutions, all satisfying eq. (1.2) to
within experimental error. Even worse, the mem-
bers of @ can have arbitrarily large deviations
from each other and therefore from the true solu-
tion (as illustrated with the arbitrary 4 above); i.e.,
the errors are unbounded.
A common special case of eq. (1.2) is

W1 = [F( 1) s(V) dh+e. (1.4)

In some cases there are exact (when ¢, =0) ana-
lytic inversion formulas for s(A). However, any
such “exact” inversion ignoring the €, will select
from © one member, which will depend on the ¢,.
In view of the unboundedness of the errors, it is
almost certain that this member will be a very
poor estimate of the true s(A). Therefore exact

inversion formulas or iterative algorithms converg-
ing to them cannot be directly applied to experi-
mental data. Even with popular modifications like
low-pass filtering the data or solution, the follow-
ing difficulties cause loss in accuracy: (1) trun-
cation, extrapolation and interpolation errors can
occur in evaluating integrals in the inversion for-
mulas; (2) the data are not properly statistically
weighted, since the contribution of each data point
to the solution is determined solely by such things
as integration formulas, spacing between the ¢,,
etc.; (3) prior knowledge, such as s(A)=0, cannot
be easily imposed.

Another common strategy for stabilizing an
ill-posed problem has been to reduce the number
of degrees of freedom by fitting a parameterized
model to the data or to use a coarse histogram or
grid to represent the solution. Here there is the
dilemma that serious errors can result if the num-
ber of degrees of freedom is too small (because of
an inadequate model) or too large (because of
instabilty of the solution to noise). The correct
number of degrees of freedom is usually very
difficult to specify beforehand. CONTIN attempts
to automatically select from £ the best comprom-
ise between a stable solution and an adequate
model. The number of degrees of freedom is not
fixed beforehand. It is automatically determined
during the analysis by the constraints and the
regularizor, which can adapt itself to the noise
level and amount of data.

CONTIN permits combinations of three types
of strategy for doing this: (1) Absolute prior know!-
edge can often greatly increase the accuracy and
resolution of a solution. For example, if it is
known that s(A) = 0, this constraint is very power-
ful at eliminating the many oscillating members of
Q that occur because of eq. (1.3). (2) Statistical
prior knowledge of the mean and covariance of the
solution and the ¢, permits the optimal (ie.,
minimum mean-square error for any linear unbi-
ased estimate) solution to be directly obtained [9].
While such prior knowledge is seldom precise, in
some cases the lack of prior knowledge can lead to
a natural covariance and mean for the solution via
the principle of exchangeability [10], which has
been very useful in analyzing complex muilticom-
ponent spectra [6]. (3) The principle of parsimony
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says that, of all the members of { that have not
been eliminated by prior knowledge, choose the
simplest one, i.e., the one that reveals the least
amount of detail or information that was not
already known or expected. While this solution
may not have all the detail of the true solution, the
detail that it does have is necessary to fit the data
and therefore less likely to be artifact.

The details of how these strategies are best
applied can obviously vary greatly from one prob-
lem to the next. Therefore, CONTIN has been
designed to be very flexible. Detailed instructions
and examples on the use of CONTIN are available
in the following paper and in the Users Manual
[11]. In this paper, we only outline the design,
capabilities, usage and computational methods of
CONTIN.

2. Design of CONTIN

CONTIN is a self-contained program with
about 5000 lines and 66 subprograms. Every at-
tempt was made to adhere to 1966 ANSI Fortran
IV standards, and CONTIN is meant to be fully
portable. The only necessary changes should be
specifying four machine dependent variables and
perhaps opening input and output files. It has
been tested on DEC 1090, IBM 360 /91, Amdahl
470 and VAX 11/780 machines and has been
distributed to about 100 laboratories with various
computers.

There are two versions, 1SP and 1DP, the latter
with more parts in DOUBLE PRECISION. Ver-
sion 1DP is recommended, except for machines
like CDC with 60-bit REAL representations. Up-
dated versions 2SP and 2DP are now being pub-
lished in the CPC Library. The main new features
are automatic internal scaling and more detailed
error estimates. Otherwise they are basically the
same as versions 1SP and 1DP, and the discus-
sions in this paper apply to all versions. The
high-speed storage requirements and running times
are problem dependent but are typically 50000
36-bit words and 60 s on a DEC 1090 KL.

CONTIN has been designed to be very flexible,
but still easy to use. There are more than 40
“control variables” that control the options in

CONTIN. They are all set to commonly used
default values in the BLOCK DATA subprogram,
and the user need only input the ones that are to
be changed. Similarly, there are 13 short, fully
documented “USER” subprograms that usually do
not need to be changed. However, they can be
easily modified by the user, and this makes CON-
TIN very flexible because they define most aspects
of the problem and strategies described in section
1.

There are also “applications packages”, which
are collections of USER subprograms for a specific
problem together with a set of test data. Applica-
tions packages are documented in ref. [11] for the
inversion of Laplace transforms [12], Fourier
transforms in low-angle scattering, and Fourier—
Bessel transforms in fiber diffraction [13] and for
the analysis of multicomponent systems with dy-
namic light scattering [S} and circular dichroism
[6].

Part of the computation time is proportional to
the cube of the number of parameters used to
represent the solution, and it becomes unreasona-
bly expensive when there are more than about 100
parameters. This is usually more than adequate
when the integral over A in eq. (1.2) is one-dimen-
sional, but not when the domain of s(A) is two- or
three-dimensional. In these cases, a more special-
ized regularization technique, such as maximum
entropy with a very efficient optimization algo-
rithm [14] would have to be used.

3. Methods of solution

3.1. Formation of linear equations

The first step is to convert eq. (1.2) to a system
of linear algebraic equations. CONTIN can auto-
matically do this by numerical integration of eq.
(1.2),

NE NL
yk: E cka(Am)s(Am)+ 2 Lszi*‘ek? (31)
m=1 i=1

where ¢,, are the weights of the quadrature for-
mula. The solution, s(A), is then determined at the
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N, grid points A . Eq. (3.1) can be rewritten as

NX

Y= 2 AX T e (3.2)
j=1

where

N,=N,+N,, (3.3)

and the N, X 1 vector x contains all the unknowns,
s(A,,) and B, and the N, X N, matrix 4 contains
the ¢, F.(A,,) and L ;. CONTIN can, of course,
handle systems of linear algebraic equations, which
are already in the form of eq. (3.2). They can be
ill-conditioned, linearly dependent, or even under-
determined with N, <N;.

As an alternative to numerical integration,
CONTIN also permits the solution to be repre-
sented as

N

M) =3 x,B (N, (3.4)

J=1

where the B/(A) are a convenient basis set of
functions specified by the user. Substitution of eq.
(3.4) into (1.2) yields eq. (3.2) with

b
A,=[EA) B(A) AN, j=1,.N,.  (35)

With either representation, it is assumed that
the errors in going from eq. (1.2) to (3.2) are much
less than the €,. This is usually no problem, even
with numerical integration and N, ~40. The best
verification is to repeat the analysis with a larger
N, and see that the results do not change. When
this is the case, numerical integration is usually
more convenient, because only the F,(A,,) have to
be evaluated and not the integrals in eq. (3.5).
CONTIN also has many options that make
numerical integration very easy to use.

Sometimes, however, it might be necessary to
use the representation in eq. (3.4) to avoid exces-
sive numerical integration errors, e.g., because
F,(A) varies very rapidly with A. Eq. (3.5) can then
be evaluated with sufficient accuracy, either ana-
lytically or numerically with a fine grid. This need
only be done once; the matrix 4 can be stored on
a file for later use (see IUNIT in section 4.2).
Therefore complicated F,(A) can be handled eco-

nomically. As we shall see below, there are im-
portant advantages when the B;(A) are B-splines
with equally spaced knots [15,16].

3.2. Constraints

CONTIN permits the following general linear
inequality and equality constraints to be imposed
on the solution vector, x:

N,

2 Dx,;=d;, i=1,..,Ng., (3.6)
Jj=1
NX
EE,-,X,:Q, i=1,0.,Neg» (3.7)
=1
where N,_., N, and the arrays D, E, d and e can

be specifieii byqthe user. These can be very useful
for imposing absolute prior knowledge, strategy
(1) of section 1.

Imposing prior knowledge of the nonnegativity
of s(A), for example, can greatly increase the
accuracy and resolution of a solution. When
numerical integration is used, we simply have from
egs. (3.1) and (3.2) x=s, where s is the N, X1
vector with elements s(A,,) (and we have ignored
the last N elements of x to simplify the notation).
Therefore s = 0 (where 0 will denote a vector with
all components zero) is imposed by setting N, =
Ns d=0, and D=1 in eq. (3.6), where I will
denote an identity matrix. CONTIN has a control
variable (NONNEG in section 4.3) for automati-
cally doing this.

When eq. (3.4) is used instead of numerical
integration, then from eq. (3.4) we have

s = Bx, (3.8)

where B is the N, X N, matrix with elements B, , =
B/(A;). Therefore s =0 is imposed as above, except
with D = B instead of D= 1. When the B,(A) are
normalized cubic B-splines with N, knots of equal
spacing, A, from A = a to A = b, then B is simply a
tridiagonal Toplitz matrix with nonzero elements
B,=2/3and B, ; ., =1/6[15,16].

In order to represent the solution to within its
inherent resolution, N, must be large enough so
that A is always substantially less than the point
spread function of the solution (see section 3.7). In
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this case, imposing a constraint like s = 0 is nearly
equivalent to imposing s(A)>=0 on the entire in-
terval a<A<b. When B-splines are used, con-
straints like s(A)=0 can be exactly imposed by
constraining x = 0. Similarly constraints on the
shape of s(A) can be exactly imposed by using x
instead of s. These nice properties are related to
Schoenberg’s variation diminishing spline ap-
proximation [16}. However, because this is a lower
order approximation, a larger N, might have to be
used. The constraints could also be made more
accurate by imposing them at more A values than
just the N, grid points; i.e., with N> N,. Usu-
ally, neither of these two measures are necessary in
practice.

3.3. Regularization

In going from eq. (1.2) to (3.2), we go from an
ill-posed problem to an ill-conditioned one. That
is, there will generally be a large set, ', of vectors
x all of which satisfy eq. (3.2) to within experimen-
tal error, €,. The constraints in egs. (3.6) and (3.7)
can eliminate many unacceptable members of ',
but there are usually many remaining with large
variations from each other.

We could take the ordinary constrained
weighted least-squares solution to eq. (3.2), i.e., the
x that satisfies

v(0) = ||M:‘/2(y~Ax)||2:minimum (3.9)

subject to the constraints in eqgs. (3.6) and (3.7),
where || + || is the Euclidean norm, M, is the (posi-
tive definite) covariance matrix of the ¢,, and y is
the N, X 1 vector with elements y,. However, this
solution is just one member of £, usually strongly
influenced by the €,. Considering the large vari-
ation among members of ', it is very unlikely that
this solution will be close to the true solution.

We therefore need to impose statistical prior
knowledge and parsimony, strategies (2) and (3) of
section 1. These can often be imposed in such a
way that the optimal solution satisfies
Via)=1M "3 y—Ax)I?+ a*llr— Rx||?
(3.10)

= minimum

subject to the constraints in egs. (3.6) and (3.7).

The second term on the right is called the regu-
larizor. Tts form is determined by the N, X 1 and
N, X N, arrays r and R, which (along with N_,)

re;
carf be specified by the user. The regularizor penal-
izes an x for deviations from behavior expected on
the basis of statistical prior knowledge or
parsimony. The relative strength of the regularizor
is determined by a, the regularization parameter.
The way that CONTIN helps in the choice of « is
discussed in section 3.6. We now outline some

common types of regularizors.

3.3.1. Statistical prior knowledge

Sometimes ¥ and M, , the mean and covariance
matrix of x, can be specified. The solution ob-
tained by putting R=M_ '/?, r=R¥and a=1in
eq. (3.10) is optimal in that it has the minimum
expected mean-square error of all linear unbiased
estimates [9]. This solution is optimal even if € and
x are not normally distributed. If they are nor-
mally distributed, then the solution is the maxi-
mum likelihood one and has the minimum ex-
pected mean-square error of all unbiased estimates
(not just linear ones).

Priors for ¥ and M, may come from previous
experiments, or one may wish to test if the solu-
tion deviates significantly from the expected one.
Even when precise information on X and M, is not
available, the lack of such knowledge can dictate
reasonable priors for ¥ and M, . For example, if all
the x; are the same type of variable, e.g., fractions
of library spectra [6], then the principle of ex-
changeability [10] suggests X, =1/N, for j=
1,...,N_and M, — I, an identity matrix. This is
similar to ridge regression [17], which is widely
used, even when this Bayesian justification does

not apply.

3.3.2. Parsimony

Often statistical prior knowledge is insufficient,
and parsimony [strategy (3) of section 1] must be
used to select the “simplest” member of €’. The
definition of “simplest” obviously depends on the
problem. Often, however, sudden sharp changes or
extra peaks in s(A) would yield significant unex-
pected information. “Smoothness with minimum
number of peaks” would then be a good definition
of parsimony, since it would tend to guard against
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significant artifacts. CONTIN has options for re-
stricting the number of extrema (see section 4.7).
A good measure of the lack of smoothness, and
therefore a good regularizor to impose smooth-
ness, is [7,16]:

nr—quZ:f”[s”(A)P da,

a

(3.11)

where prime denotes differentiation.

When numerical integration with equally spaced
A, in eq. (3.1) is used, eq. (3.11) can be approxi-
mated by the sum of the squares of the second
differences, s(XA,,. ) —2s(A,,)+s(X,, ;). This is
done by setting r = 0 and R= P, where P is the
(Ng +2)X Ng matrix of bandwidth three,

[ ]
-2 1 0

1 -2 1

P=
1 —2 1
0 1 -2
L 1]
(3.12)

[The constant factor, A~?=(A,,—A,,_,) 2, has
been left out of eq. (3.12) because it can be ab-
sorbed into a, the regularization parameter, which
is usually left as a parameter to be determined by
the methods of section 3.6.] The first two rows are
formed by taking second differences at two exter-
nal points, A\ =a— A and A_; = a — 2A. The first
row imposes the condition s(A_,) = s(A,) =0 and
the second row s(A,) = 0. These two rows should
be deleted unless there is prior knowledge that
s(A) =0 in this region. Otherwise they will tend to
incorrectly bias s(A) to smoothly approach zero
near A = a. Similarly, the last two rows should be
deleted unless there is prior knowledge that s(b +
A)=s(b+2A)=0. Section 4.5 explains how the
user can specify which rows to delete and have
CONTIN automatically set up the regularizor.
When eq. (3.4) is used instead of numerical
integration, one can also apply the second-dif-
ference operator to eq. (3.8), simply obtaining
R = PB instead of R = P. However, eq. (3.11) can
be specified exactly by setting r =0 and R = G'/2,

where G is the N, X N, matrix with elements

G, = ["BI0) B(n) da. (3.13)
When the B,(A) are cubic B-splines with equally
spaced knots between A=g and A=5b, G is a
symmetric heptadiagonal matrix with the elements
along each diagonal equal except for the first three
and the last three, 6G,;=2,8,14,16,...,16,14,8,2;
6G; ;1= —3,-6,-9,...,-9, -6, -3, G, ,. ,=
0; 6Gj,j$3: I, for j=1,...,N,. (We have again
absorbed a normalization constant into a.) If it is
known that s(A) = 0 outside of the region covered
by the splines, then the integration limits in eq.
(3.13) can be extended to * oco. There are then no
more truncation effects at the boundaries and all
elements of each diagonal are equal; ie., G be-
comes a Toplitz matrix with 6Gj,: 16, —9,0, 1,
for i=j, j=1, j£2, j=3. This is eq. (15) of ref.
[18], except for typographical errors. An integra-
tion limit in eq. (3.13) should not be extended to
* oo unless there is prior knowledge that s(A) =0
outside the range of the splines at that boundary;
otherwise s(A) is biased toward zero at that
boundary.

Parsimony may often be considered a vague
type of statistical prior knowledge. For example,
experience has shown that many (continuous ap-
proximations to) polymer molecular weight distri-
butions are well represented by smooth functions,
and there are often good chemical kinetic grounds
to expect this. More generally, s(A) is often a
macroscopic composite of a large number of mi-
croscopic contributions and, for example, Jaynes’
principle of maximum degeneracy for prior proba-
bility laws can naturally lead to the maximum
entropy regularizor [19]. This regularizor is nonlin-
ear and cannot be put in the form of eq. (3.10),
but it also tends to smooth the solution. We have
found eq. (3.11) to be a very useful general-pur-
pose smoothing regularizor. It is probably more
effective at suppressing extra isolated peaks in
s(A) than maximum entropy, which takes no di-
rect account of correlation or connectivity between
neighboring grid points of s(A).
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3.4. Computational methods

Once the regularizor and constraints are speci-
fied, CONTIN finds the unique solution to eq.
(3.10) subject to the constraints in eq. (3.6) and
(3.7). The computational methods are outlined in
the appendix, and the steps are only summarized
here. First the (ppssibly very long) arrays y and 4
are orthogonally transformed sequentially, row-by-
row, so that the N, X N, array A need never be in
high-speed storage. Then a series of orthogonal
transformations and changes of variables are ap-
plied, whereby the equality constraints are elim-
inated and the regularizor diagonalized, yielding a
constrained ridge regression problem. This is
transformed into a least distance programming
problem, whose unique solution is obtained in a
finite number of steps. Numerically stable proce-
dures [20] are used throughout.

3.5. Information content and degrees of freedom

The solution x typically has 40 or more compo-
nents. However, it should be clear that most in-
verse problems are so unstable to noise that 40
independent parameters could never be reliably
determined in practice. The regularizor and con-
straints make the x, correlated. It is therefore
important to know how many degrees of freedom
(i.e., truly independent parameters or pieces of
information) there are in a solution.

Several methods of determining Ny, the num-
ber of degrees of freedom, have been proposed.
One of the earliest uses a sampling theorem for a
solution of compact support [21] and another the
eigenvalues of the kernel of the integral operator
[22]. However, these are not appropriate for digital
data, which are discrete rather than continuous
and often have nonstationary noise and nonuni-
form spacing. Twomey and Howell [23] eliminated
all of these problems by using the eigenvalues of
the N, X N, Grammian matrix of the F;(A). This
could be applied to eq. (1.2) when N, is small,
N, =0, and there are no constraints.

One area where N is defined very naturally
and precisely is in ordinary least squares. For
example, if there are enough data and parameters
to represent the solution, then the expected value

of ¥(0) in eq. (3.9) is simply N, — Np,. The regu-
larizor complicates matters because an additional
bias term, B, occurs,

E{V(a)} =N,— Npp + B?, (3.14)

as explained for eq. (A.35). However, we have
transformed the problem to ridge regression in eq.
(A.13), and Mallows [24] has derived useful statis-
tical properties for this problem when there are no
binding inequality constraints. We therefore define
Npg so that the precise expressions, such as eq.
(3.14) for ordinary least squares and least squares
on a subset of regression coefficients still hold
when «>0. When this is done with Mallows’ C
statistic [24], which is an estimate of the scaled
sum of squared errors in the x,, we obtain

nyc

Npe= 2 8, (3.15)
j=1

where

=53/ (524 o) (.16

and s; and N, are defined by eqs. (A.23) and
(A.24). If this were done with Mallows’ V| and
V¥, the variance terms in the scaled sum of squared
errors and in V(e&), Npe would be

nyc
28 (3.17)
j=1
nyc
> (25-87), (3.18)

Jj=1

respectively.

Fortunately, these three Ny values are usually
quite close. The differences between the terms in
egs. (3.15) and (3.17) and between (3.18) and
(3.15) are both §,(1 —§;). These are usually small
because the eigenvalues sj2 generally decrease
rapidly, with few near a?; 8, is therefore usually
close to zero or one. CONTIN arbitrarily uses N
in eq. (3.15), which lies between those of egs.
(3.17) and (3.18). It seldom varies from the other
two by more than 0.5 for unstable problems (when
the sj2 decrease rapidly) or 1.0 for more stable
problems such as the analysis of multicomponent
circular dichroism spectra.
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We can obtain an instructive heuristic interpre-
tation of eq. (3.15) by considering the filtering
effect of the regularizor. For the simple case in
section A.2 we can use eq. (A.19) to write eq.
(A.31) as

x=K,ZH, 'Wg(a), (3.19)
where the N, X 1 vector g(«a) has elements
g (&) =5,y,/(s2+a?), (3.20)

and contains all the a-dependence of x. Thus the
sole effect of the regularizor is to multiply the
contribution of each of the N, components y, by
the factor

g,(@)/g,(0) =3,

and 1t is natural to define N in eq. (3.15) as just
the sum of these fractional contributions.

Note from egs. (A.15) and (A.23) that the s; are
the singuiar vaiues of CK,ZH, '. Thus the s; (and
Npg) contain information on the equality con-
straints (in K,) and reguiarizor (in ZS; ') as well
as on the properiy weighted discrete design matrix
A (in C). The s, are determined by the structure of
the probiem alone; they are independent of the
data. They can therefore be useful in evaluating
and companng experimental designs. In contrast,
a 1s determined by the data (as described in sec-
tion 3.6). As the noise in the data increases, so
does a. When 5,70, §, in eq. (3.16) decreases
monotonically from 1.0 when a = 0 toward 0.0 as
a~ o0.

CONTIN prints the s; in decreasing order un-
der the heading “SINGULAR VALUES”. Prob-
lems with smooth F,(X) tend to be more difficult
because the s; rapidly decrease. For example, with
Laplace transforms, N can be surprisingly small,
even with relatively accurate data. Thus Ny (and
other information discussed in section 3.6) can
help prevent overinterpreting a solution.

It is important to note the meaning of Ny
when there are active inequality constraints. As
outlined in section A.2, each binding inequality
constraint is eliminated as an equality constraint
and does not contribute to Npp. For example, if
the true s(A) were approximately a §-function,
accurate data and nonnegativity constraints might

(3.21)

result in a solution with s(A ) =0 for all but two
grid points. We would then have Ny =<2, which
means that the solufion can be described by two
parameters. It does not mean that the data are
only capable of determining at most two parame-
ters. A lower limit for this information content
would be given by the N obtained from an
analysis without the inequality constraints. This
limit neglects the superresoiution due to the in-
equality constraints, and this can be very signifi-
cant for smooth F,(A) such as in Laplace trans-
forms.

3.6. Choosing the regularization parameter

There are some cases when the choice of « is
clear. For exarnpie, with a regularizor constructed
from prior statistical knowledge of M, and ¥, as
discussed in section 3.3, a=1 would be ap-
propriate.

In most cases, however, it is best to let CON-
TIN perform a series of solutions where a 1is
gradually increased from a very small value. For
each solution, CONTIN outputs «, a/s,, V(a),
WM '2(y — Ax)lI?, Npp and

1/2

6=IIM_"*(y—Ax)l/(N,—Nye) ", (3.22)

as well as several other quantities and optional
plots, which will be described below. The principle
of parsimony says to take the largest a that is
consistent with the data. Considering the way in
which N was defined in section 3.5, the expected
value of ¢ is approximately 1.0 as long as a is
small enough so that the bias term due to the
regularizor is not significant. Therefore, a reasona-
ble choice is the largest a such that 6~ 1.0.

Unfortunately, there is often an unknown scale
factor in M_; i.e., we know the relative uncertain-
ties and correlations in the data points fairly well,
but not their absolute values. In this case the
expected value of 6 is unknown, and « must be
chosen with another criterion. For this purpose
CONTIN also outputs

PROBI(a) = P[ Fi(a), Npp(ay), Ny, — Npe(ay)].
(3.23)

where P(F,n,,n,) is Fisher’s F-distribution with
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n, and n, degrees of freedom,

V(a) — V(ag) Ny"NDF(aO)
V(ag) Npe(ag)

Fa)= (3.24)

and «, is the a for which the weighted sum of
squared residuals, ||M, '/*(y—Ax)Il?, is mini-
mum. Normally &, will be the smallest in the series
of « values used, but numerical instabilities may
require a slightly larger «,. In either case, the
solution with a, will be approximately the ordinary
least squares solution, which corresponds to a = 0.
Egs. (3.23) and (3.24) then define the usual confi-
dence regions for ordinary least squares. That is,
the fractional increase of V(a) over V(a,) will
occur 100[1 — PROB1(a)]% of the time due to
chance alone (i.e., due to the random sample of
noisy data). Therefore, only when PROBI(«a) is
greater than, say, about 0.9 are there significant
grounds to suspect that « may be too large and
biasing the solution. At the other extreme,
parsimony dictates to suspect any a with
PROBI(«) << 0.1 as being too small; with such a
weakly weighted regularizor, artifacts could very
well be present. The recommended region is be-
tween these limits. CONTIN outputs the solution
with PROB1(«) nearest 0.5 once again at the end
»f the analysis. PROBI(a) increases monotoni-
«ally with increasing a.

We have consistently found this criterion to be
useful and reliable over a wide range of applica-
tions and have given a brief heuristic justification
[12]. However, Obenchain {25] had independently
proposed the same criterion and given a detailed
justification. It is implicitly assumed that the noise
is multivariate normal with zero means. However,
slight deviations from normality are not nearly as
critical as unaccounted for systematic errors or
presmoothed data. In these latter cases, one must
use other criteria for choosing «a, such as visual
inspection of plots of the weighted residuals or fits
to the data (section 4.8).

3.7. Error estimates and resolving power

Care must be exercised in making statements
about error estimates and confidence regions, since

the errors in solutions to ill-posed problems are
generally unbounded. Version 2 of CONTIN com-
putes =, the covariance matrix (derived in section
A.2) of the solution, and plots the (2,)}/* as
“error bars” with the solution. However, this ne-
glects the bias term in eq. (A.35); i.e., it assumes
that the regularizor is not biasing the solution and
that there are enough parameters to represent the
solution adequately. As a ~ co the error bars lose
all meaning and approach zero.

Similarly, as discussed in section 3.6, the range
of solutions with 0.1 < PROBI1(«) <0.9 would de-
fine something analogous to a confidence region
only on the assumption that the regularizor is not
significantly biasing the solution and that the
parameterization is adequate. For example, if the
regularizor is imposing smoothness, then one could
say, “the smoothest solution consistent with the
data probably lies within this range”. The qualifier
“smoothest” must be there. Nevertheless, these
analogs to error estimates and confidence regions
can be very useful at indicating which regions or
features of the solution are well determined by the
data and which are uncertain.

Another useful way of assessing the accuracy of
a solution or the potential of an experimental
method is to use simulations (section 4.6) to de-
termine resolving power and point spread func-
tions. For example, suppose that in the analysis of
a data set the criteria of section 3.6 yiclded a
certain «. CONTIN has the option to repeat the
analysis with « fixed at this value and everything
else the same except that the data are replaced
with noise-free simulated data corresponding to
s(A)=8(A—A,), a Dirac 8-function at A=A,.
The resultant solution tells how much a 8-function
is spread by the regularization. Repeating the anal-
ysis at different A, values tells where the spread is
large and the resolution poor (due to insufficient
information in the data on that region of the
A-axis) and where the resolution is high. One can
also investigate pairs of 6-functions and see how
close they can come on the A-axis and still be
resolvable into two peaks.

With linear systems, these point spreads apply
directly to the solution with the original data set.
When there are binding inequality constraints, the
correspondence is no longer exact because the
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solution is nonlinear. However, it is precisely this
nonlinear action of the inequality constraints that
can be so effective at increasing the resolution and
the stability of the solution to noise.

CONTIN also allows more conventional simu-
lations using s(A) that are likely to occur in prac-
tice and superposed pseudorandom noise. These
simulated data are then analyzed in the usual way
with « chosen with the criteria of section 3.6.

4. Control variables and USER subprograms

This section gives a brief overview of the most
important options available in CONTIN. Some of
the control variables and all 13 USER subpro-
grams are mentioned. Full descriptions are given
in the following paper and in ref. [11]. In this
section all variable names in all capitals are con-
trol variables. The names of USER subprograms
are uniquely identified because their names all
begin with the characters “USER”.

4.1. Input control

Several analyses can be performed in one run.
If LAST = .FALSE., then CONTIN will read in
and analyze another data set after the present
analysis is finished. Values of control variables are
preserved from one analysis to the next. Only the
values that are to be changed need to be input.

DOUSIN = .TRUE. will call USERIN after the
input data has been read but before the analysis is
started. Therefore USERIN can be used to per-
form any necessary preprocessing of the input
data. All input data and control variables are
output right after the optional call to USERIN,
Jjust before the analysis is started. Extensive tests
for inconsistencies and error conditions are made
during input and analysis. There are more than 50
diagnostics with likely causes and remedies given
in the Users Manual [11].

Other control variable arrays specify the input
format for arrays such as the y,. There are also
three control variable arrays, RUSER, IUSER,
LUSER, of type REAL, INTEGER and LOGI-
CAL and with length 100, 50 and 30, respectively.
They (as well as all other control variables) are

available in COMMON blocks in all USER sub-
programs. They can be used to input data for use
in USER subprograms or to store results produced
there.

4.2. Specifying the problem

The conversion of eq. (1.2) to (3.1) is specified
as follows. IQUAD =1 if the problem is already
in the form of linear algebraic equations; the ¢, in
eq. (3.1) will all be set to 1.0. When IQUAD =2
or 3, the ¢,, will be automatically computed for the
trapezoidal or Simpson’s rule, respectively.

GMNMX(1)=a and GMNMX(2)=5 in eq.
(1.2). IGRID =1 will put the quadrature grid in
equal intervals of A from a to b. IGRID = 2 will
put the grid in equal intervals of the monotonic
function A(A), which is specified in USERTR. The
default version of USERTR sets A(A)=In(\).
IGRID = 3 will call USERGR to define special-
purpose ¢,, and A, in eq. (3.1). The default version
of USERGR simply reads the A, in and computes
the c,, for the trapezoidal rule. NG =N, in eq.
3.1).

USERK evaluates the F(),,) in eq. (3.1). If
NLINF = N, is positive, then USERLF is called
to evaluate the L, in eq. (3.1). IUNIT =0 speci-
fies that the F (A, ) and L,, be written on the
storage device identified by the integer IUNIT.
They are then only evaluated once and are read
later when they are needed (twice for each «
value).

4.3. Constraints

DOUSNQ = .TRUE. will call USERNQ to set
Nineq» D and d in eq. (3.6). For the special case of
nonnegativity, it is better to simply set NONNEG
=.TRUE., which will automatically constrain x g
=0 for j=1,...,N,, NEQ=N, >0 will call

USEREQ to set £ and e in eq. (3.7).
4.4. Weighting the data

The most common assumption is that the co-
variance matrix M, in eq. (3.10) is diagonal, i.e.,
that the experimental errors are uncorrelated. In
this case, CONTIN has convenient options for
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specifying M, in terms of the least-squares weights,
W, = (M), =1/0%(y,), where o*(y,) is the
variance of the random variable y,. (If M, is not
diagonal, the user could modify USERIN and
USERK to account for this.)

IWT=1 will set the W,=1, which is ap-
propriate if the noise level is the same for all data
points. IWT =2 assumes o’(y,) =j,, where y, is
the expectation value of y,; this is appropriate if
the data follow Poisson statistics. IWT =3 as-
sumes 6°(y, ) =y;. IWT =4 simply reads the W,
in. IWT = 5 will call USERWT to compute the W,
for special cases not covered by IWT=1,...,4.
There are default versions of USERWT ap-
propriate for photon correlation spectroscopy and
fibre diffraction.

It is often dangerous to use the y, in place of
the unknown y,. For example with Poisson statis-
tics this would cause the weights, W, =1 /y,, to be
too large for those y, with ¢, <0 and would thus
bias the analysis toward these data points. There-
fore, when IWT =2, 3 or 5, CONTIN performs a
preliminary unweighted analysis (i.e., with all W,
= 1.0). The resultant “fit values”, p,, computed
from the right-hand side of eq. (3.2), are used as a
better estimate of y, to compute the W, . Price [26]
has pointed out that, for Poisson statistics, this
produces approximately a maximum-likelihood
analysis. When NERFIT >0, an added precaution
against very small y, causing very large W, is
taken by estimating the noise level in the y, near
the minimum of |y, | [11].

4.5. Regularization

NORDER =n,n=0,1,...,5 will set ||r— Rx||?
in eq. (3.10) to the sum of the squares of the nth
differences of successive values of the x; for j=
l,...,N,. For example, NORDER =2 automati-
cally produces the regularizor in eq. (3.12), and
NORDER =0 sets R to the N, X N, identity ma-
trix. Thus NORDER =2 is good for imposing
smoothness, and NORDER = 0 performs ridge re-
gression [17]. Other positive values of NORDER
are generally inappropriate.

NENDZ(J) with J=1 or 2 specifies the exter-
nal boundary conditions for s(A) when NORDER
>0 and the grid of A, points is in equal intervals,

A, of A or A(A). [See section 4.2 and the discussion
following eq. (3.12).] NENDZ(1) is the number of
external grid points, s(a — A), s(a —
2A),...,specified to be zero. NENDZ(2) is the
number of external grid points, s(b -+ A), s(b+
2A7),..., specified to be zero. Thus NORDER = 2
and NENDZ(1) = NENDZ(2) = 2 would result in
the regularizor in eq. (3.12); NENDZ(1) = 0 would
eliminate the first two rows and NENDZ(2)=0
the last two rows.

NORDER <0 will call USERRG to set a spe-
cial-purpose N,, r and R in eq. (3.10). There are
default versions of USERRG to impose statistical
prior knowledge of the expectation value of x
[27.6].

There are other control variables to specify the
number and range of « values. The default settings
insure that the range is automatically set wide
enough.

4.6. Simulation

SIMULA = TRUE. will call USERSI and
USEREX to produce simulated data. USEREX
produces noise-free values for the y,. USERSI
then adds pseudorandom variables to these noise-
free values. The default version of USEREX and
USERSI simulate a §-function distribution for s(A)
with noisy data corresponding to a second-order
correlation function in dynamic light scattering
[12], with the noise level specified by the user.
These versions can be easily modified for other
types of simulations.

Simulations can be very useful in assessing the
potential of an experimental method or design,
even before the instrument is built or the experi-
ment performed. Section 3.7 discusses some appli-
cations of simulations.

4.7. Peak-constrained solutions

Often the presence of extra extrema or peaks in
a solution, s(A), would be important new informa-
tion. The principle of parsimony would then dic-
tate that, in addition to smoothness, the solution
with the fewest number of extrema that is con-
sistent with the data should be sought.

There are six control variables, described in
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detail elsewhere [11], that can limit the number of
extrema in s(A). This is done by dividing the
A-grid into monotonic regions where inequality
constraints make s(A) either nonincreasing or non-
decreasing. The boundaries of these regions are
then systematically moved, one grid point at a
time, until a local minimum in V(«) is found.
Thus, in contrast to the usual case in CONTIN,
peak-constrained solutions are not guaranteed to
be global optima, only local. However, the most
common application is constraining s(A) to have
only one peak. A global solution can then be
obtained easily by exhaustively covering all the
grid points. As the allowed number of extrema
increases, the inefficiency of the computation
rapidly increaes. Therefore no more than five ex-
trema (i.e., a bimodal solution) are allowed.
Peak-constrained solutions can be useful in
guarding against artifacts. If a solution with several
peaks is obtained, a peak-constrained analysis can
be performed to see if a solution with fewer peaks,
but still consistent with the data, can be found. If
not, then one can say with more confidence that
the data require the original number of peaks, and
therefore that they are less likely to be artifacts.

4.8. Output control

There are 12 control variables for specifying the
quantity and spacing of the output. There are
options for producing line-printer plots of the
solution, the fit to the data and the weighted
residuals of the fit. There are also options for
computing various moments of the solution.

DOUSOU = .TRUE. will call USEROU right
after each solution is plotted. This can be useful if
further output or computations with the solution
are desired. The default version of USEROU mul-
tiplies x by a matrix to compute the fraction of
each structural class present from the fractional
contribution of library circular dichroic spectra to
the data spectrum [6].

ONLY1 = .FALSE. will cause a second curve
(that has been computed in USERSX) to be plotted
with the solution. This is most often used with
simulations to plot the exact solutions.
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Appendix. Computational methods
A.1. Constrained solution of eq. (3.10)

In this appendix we outline the quadratic pro-
gramming solution to eq. (3.10) subject to the
constraints in eqs. (3.6) and (3.7). Priorities are
placed on saving computation time and high-speed
storage and in exploiting the fact that CONTIN
performs a series of solutions only varying « or the
inequality constraints. Version 2 of CONTIN per-
forms automatic internal scaling of the arrays, but
to avoid complicating the notation, this is not
explicitly shown.

The matrix 4 in eq. (3.10) is N, X N, and N,
can be 1000 or more. Therefore, to avoid keeping a
large 4 in high-speed storage, if N,>N,, M '/?p
and M. /24 are orthogonally transformed, row-
by-row, to B and C with sequential Householder
transformations [20]. This produces a problem with
the identical solution, x,

V(a)=Illg—Cx|?>+ ¥V, + a*|lr — Rxll?
= minimum, (A1)

but where n and C are only N, X1 and N, X' N,,
respectively, where

N, = min( N, Ny).

The constant V/, can be ignored, since it will not
affect the solution. CONTIN assumes that M, is
diagonal so that M, /2 simply multiplies each row
of y and A4 by a consant during the processing. The
user could modify USERIN and USERK to han-
dle a nondiagonal M, (i.e., correlated noise) if
necessary.
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The rank of E in eq. (3.7) must be N,; i.e., the
equality constraints must be linearly independent
and consistent with each other. The equality con-
straints are eliminated using an orthogonal basis
of the null space of E [20]. That is, an N, X N,
orthogonal matrix, K, is computed with House-
holder transformations such that EK, is lower
triangular and EK, has all zero elements when K

is partitioned into
K=[K,|K,]. (A2)
where K, is N, X N,

eq?
— Neg-
We make the change in variables

K,is N, XN,,and N =N,

X
x=K X, =K,x, +K,x;, (A.3)

where we have partitioned the vector of new vari-
ables into the N,, X 1 and N, X1 vectors x, and
x,. Eq. (3.7) then reduces to EK x, =e, which
yields part of the solution,

x, = (EK,) 'e. (A.4)

Substituting eq. (A.3) into (A.1) and (3.6), we
obtain a problem with reduced dimensions,

(g — CK,x,) — CK,x,|I> +a*|l(r— RK x,)
—RK, x,|* = minimum (A.5)

subject only to

DK,x,=d— DK x,, (A.6)

where only x, is unknown. If there are no equality
constraints, there is no K, or x, and K, is simply
the N X N, identity matrix.

If N,,, < N,, then zero rows are added to R and
r so that N, = N,,.. The singular value decomposi-

tion of RK, is then computed.

— H, T
RK,= U[ HJZ , (A7)
where the superscript T denotes matrix transposi-
tion, U(N,., X N,.,) and Z(N,. X N,,) are orthogo-
nal matrices, H, is an N, X N, diagonal matrix,
and H, is (N, — N,.) X N, with all zero elements.
If necessary, to make H, and RK, full rank, the
diagonal elements (singular values) of H, are in-

creased to at least a small fraction of the largest
singular value. The size of the fraction is automati-
cally set according to the relative machine preci-
sion. We then make the change in variables

x,=7Z"x,, x,=27x,, (A.8)
and multiply the vector inside the second || * [|? in
eq. (A.5) by U (which does not change the value
of || <112, since UT is orthogonal). Egs. (A.5) and
(A.6) then become
(g — CK,x,) — CK,Zx; 11> + & |/, — Hx;12
+a?|lr, ||* = minimum, (A.9)
DK,Zxy;=d— DK x|, (A.10)

where the N, X1 and (N, —
and r, are defined by

N, ) X1 vectors r,

UT(r*Rlel):[:;]. (A.11)

In eq. (A.9), the term a?|[|r,|* will be discarded
since it is independent of the solution x,; and
therefore does not affect it.

We can now transform the problem to a con-
strained ridge regression problem with the change
of variables

x,=Hx,—r, x;=H '(x,+nr). (A.12)
Eqgs. (A.9) and (A.10) then become

I(n — CK,x, — CK,ZH; 'r)) — CK, ZH; 'x,||?
(A.13)
DK,ZH, 'x,=d— DK,x, — DK,ZH{ 'r,. (A.14)

+a? |l x, ||* = minimum,

We perform the singular value decomposition

CK,ZH;'=QSW", (A.15)

where Q(N,, X N, ) and W(N,, X N,.) are orthog-
onal and S(N,, X N,.) is diagonal. Making the
change in variables

(A.16)

xs=W'x,, x,=Wxs,
and multiplying the vector in the left || |? in eq.
(A.13) by QT, we can write egs. (A.13) and (A.14)

as

lly — Sxsll* + a? |l x| > = minimum, (A.17)
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DK,ZH; 'Wxs>d— DK x, — DK, ZH; 'r,,
(A.18)

where the N, X 1 vector y is defined by

y=0"(n—CK,x,— CK,ZH| 'r). (A.19)

The following equation is identical to eq. (A.17)
except for some constants, independent of x,,
which do not affect x,:

12

| ¥ — Sx;||* = minimum, (A.20)

where ¥ is the N X 1 vector with components

- —1/2 .
yj:yjsj<sj2+a2) , J=1L..,N

o xye

(A.21)

and S(N, X N,) is diagonal with diagonal ele-
ments

$,=(s2+a?)"”, (A.22)
where

;=S8 j=1,..,N,,., (A.23)
N,,.=min(N,,N,,) = min(N,, N, — N, ) (A.24)

and, if N, <N,

5,=0, ¥,=0, j=N,, +1,..,N, (A.25)

e

The equivalence of problems (A.17) and (A.20)
can be easily verified by comparing the two ex-
plicit expansions of the |/« ||%, which are simple
sums of squared binomials.

We obtain the final form of the problem by
making the change of variables

gzgxs'“'?, x5:§71(£+}~,)’ (A.26)
whereby egs. (A.20) and (A.18) become
Il€]1? = minimum, (A.27)

DK,ZH, 'WS™'%¢>d— DK x,
—DK,ZH; '(r,+ WS '¥).
(A.28)
Egs. (A.27) and (A.28) are solved with a least
distance programming procedure [20] that checks

the consistency of eq. (A.28) and finds the unique
solution, £, in a finite number of steps. From £ and

egs. (A.3), (A.8), (A.12), (A.16) and (A.26), we
obtain our solution,

x=Kx,+ K, ZH'[WST'(¢+%) +r]. (A29)

CONTIN performs a series of solutions keeping
everything constant except either « or the inequal-
ity constraints (during peak-constrained solutions).
In either case, most of the time-consuming compu-
tations, e.g., the singular value decompositions in
egs. (A.7) and (A.15), are done only once for the
whole series. In egs. (A.28) and (A.29), only ¥ and
the diagonal matrix S~ ! depend on a, and only D
depends on the inequality constraints that change
during the peak-constrained solution. Therefore,
during either of these series, the only time-con-
suming part is the least distance programming
solution of egs. (A.27) and (A.28). This could
perhaps be speeded up by using a parametric
programming approach, where the preceding solu-
tion provides a starting point for the next solution.
However, the Lawson-Hanson algorithms [20]
have proven to be reliable, numerically stable, and
efficient in time and storage.

A.2. Error estimates

For simplicity, we first consider the special case
where (1) there are no binding inequality con-
straints, and hence £ =0 in eq. (A.29); (2) there
are no equality constraints, and hence no x, in eq.
(A.29); 3) Ny<N,; and (4) N, =N, and r, = 0'in
eq. (A.11). This last condition 1s satisfied when
N, = 0 and r; = 0, as with smoothing regularizors.
These conditions mean that N, =N =N =N,.

Under the above conditions, eq. (A.29) reduces

to
x=K,ZH'WS 3. (A.30)

Substituting eqs. (A.19), (A.21) and (A.22) into

(A.30), we can write
x=K,ZH'WG(a) Q'n, (A.31)

where G(a) is the N, X N,, diagonal matrix with
elements
Gj./’ = S/'/ (sz + az)' (A-32)

Thus, x is just a linear transformation of m, and
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=, the covariance matrix of x, is simply

S, = (K, ZH 'WGQ") M,(K,ZH, 'WGQ")".
(A.33)

M, =1, since nm was obtained from orthogonal
transformations of M, '/?y, which has an identity
covariance matrix., Since Q is also orthogonal, eq.
(A.33) reduces to

S, = (K,ZH W) GH(K,zH ‘W) . (A34)

The expected squared error in any x; is

E{(x‘, ijo)z} =(Z),* [E{xj—x;)}]z, (A.35)

where the xjo are the true values. The second term
on the right, the (generally unknown) squared
bias, will only be zero when a is zero or when the
regularizor does not bias the solution. From eqs.
(A.32) and (A.34), it is clear that the (), de-
crease monotonically with increasing «, approach-
ing zero as a ~ oo. The squared bias term increases
monotonically with increasing a [17]. Therefore
care must be taken in discussing expected errors
solely on the basis of Z,.

This special case can be generalized by remov-
ing assumptions (2)-(4) above. The algebra is more
complicated because the matrices are no longer
necessarily square or full rank, and the constraints
and regularizor imply that x is to be replaced by
x— K, x,—K,ZH, 'r,.

Inequality constraints present a fundamental
problem because the estimate is no longer linear,
although some progress in this area has been made
[28]. CONTIN simply takes the binding inequality
constraints in a solution and eliminates them as
equality constraints using the procedure in egs.
(A.2)—(A.6). The covariance matrix is then recom-
puted for the reduced unconstrained problem, as
described above. This will underestimate the vari-
ances.
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